
Dynamic Dispatch and Duck Typing

L25: Modern Compiler Design

Late Binding

• Static dispatch (e.g. C function calls) are jumps to specific
addresses

• Object-oriented languages decouple method name from
method address

• One name can map to multiple implementations

• Destination must be computed somehow

VTable-based Dispatch

• Tied to class (or interface) hierarchy

• Array of pointers (virtual function table) for method dispatch�
struct Foo {

int x;

virtual void foo();

};

void Foo::foo() {}

void callVirtual(Foo &f) {

f.foo();

}

void create () {

Foo f;

callVirtual(f);

} 	� �

Calling the method via the vtable

�
define void @_Z11callVirtualR3Foo (% struct.Foo* %

f) uwtable ssp {

%1 = bitcast %struct.Foo* %f to void (% struct.

Foo*)***

%2 = load void (% struct.Foo*)*** %1, align 8,

!tbaa !0

%3 = load void (% struct.Foo*)** %2, align 8

tail call void %3(% struct.Foo* %f)

ret void

} 	� �

Creating the object

�
@_ZTV3Foo = unnamed_addr constant [3 x i8*] [

i8* null ,

i8* bitcast ({ i8*, i8* }* @_ZTI3Foo to i8*),

i8* bitcast (void (% struct.Foo*)*

@_ZN3Foo3fooEv to i8*)]

define linkonce_odr void @_ZN3FooC2Ev (% struct.

Foo* nocapture %this) {

%1 = getelementptr inbounds %struct.Foo* %this

, i64 0, i32 0

store i32 (...) ** bitcast

(i8** getelementptr inbounds ([3 x i8*]*

@_ZTV3Foo , i64 0, i64 2) to i32 (...) **),

i32 (...) *** %1

} 	� �

Problems with VTable-based Dispatch

• VTable layout is per-class

• Languages with duck typing do not tie dispatch to the class
hierarchy

• Selectors must be more abstract than vtable offsets (e.g.
globally unique integers for method names)

Ordered Dispatch Tables

• All methods for a specific class in a sorted list

• Binary (or linear) search for lookup

• Lots of conditional branches for binary search

• Either very big dtables or multiple searches to look at
superclasses

• Cache friendly for small dtables (entire search is in cache)

• Expensive to add methods (requires lock / RCU)

Sparse Dispatch Tables

• Tree structure, 2-3 pointer accesses + offset calculations

• Fast if in cache

• Pointer chasing is suboptimal for superscalar chips (inherently
serial)

• Copy-on-write tree nodes work well for inheritance, reduce
memory pressure

Inverted Dispatch Tables

• Normal dispatch tables are a per-class (or per object) map
from selector to method

• Inverted dispatch tables are a per-selector map from class (or
object) to method

• If method overriding is rare, this provides smaller maps (but
more of them)

Lookup Caching

• Method lookup can be slow or use a lot of memory (data
cache)

• Caching lookups can give a performance boost

• Most object-oriented languages have a small number of
classes used per callsite

• Have a per-callsite cache

Callsite Categorisation

• Monomorphic: Only one method ever called
• Huge benefit from inline caching

• Polymorphic: A small number of methods called
• Can benefit from simple inline caching, depending on pattern
• Polymorphic inline caching (if sufficiently cheap) helps

• Megamorphic: Lots of different methods called
• Cache usually slows things down

Simple Inline Cache

�
[wobject aMethod:foo]; 	� ��
static struct {

Class cls;

Method method;

} cache = {0, 0};

static SEL sel = compute_selector("aMethod");

if (object ->isa != cache ->cls) {

cache ->cls = object ->isa

cache ->method = method_lookup(cls , sel);

}

cache ->method(object , sel , foo); 	� �
What’s wrong with this approach?

Updates? Thread-safety?

Simple Inline Cache

�
[wobject aMethod:foo]; 	� ��
static struct {

Class cls;

Method method;

} cache = {0, 0};

static SEL sel = compute_selector("aMethod");

if (object ->isa != cache ->cls) {

cache ->cls = object ->isa

cache ->method = method_lookup(cls , sel);

}

cache ->method(object , sel , foo); 	� �
What’s wrong with this approach? Updates? Thread-safety?

Cache Scope

• Global cache

• Needs locking or lockless updates for multithreaded languages
• False sharing problems

• Per-thread cache
• No Contention
• Accessing TLS can be expensive in shared libraries

• Method-Local Cache
• Allocated on stack
• No synchronisation needed
• Access is cheap
• Cache only persists for current function duration

Cache Scope

• Global cache
• Needs locking or lockless updates for multithreaded languages
• False sharing problems

• Per-thread cache
• No Contention
• Accessing TLS can be expensive in shared libraries

• Method-Local Cache
• Allocated on stack
• No synchronisation needed
• Access is cheap
• Cache only persists for current function duration

Cache Scope

• Global cache
• Needs locking or lockless updates for multithreaded languages
• False sharing problems

• Per-thread cache

• No Contention
• Accessing TLS can be expensive in shared libraries

• Method-Local Cache
• Allocated on stack
• No synchronisation needed
• Access is cheap
• Cache only persists for current function duration

Cache Scope

• Global cache
• Needs locking or lockless updates for multithreaded languages
• False sharing problems

• Per-thread cache
• No Contention
• Accessing TLS can be expensive in shared libraries

• Method-Local Cache
• Allocated on stack
• No synchronisation needed
• Access is cheap
• Cache only persists for current function duration

Cache Scope

• Global cache
• Needs locking or lockless updates for multithreaded languages
• False sharing problems

• Per-thread cache
• No Contention
• Accessing TLS can be expensive in shared libraries

• Method-Local Cache

• Allocated on stack
• No synchronisation needed
• Access is cheap
• Cache only persists for current function duration

Cache Scope

• Global cache
• Needs locking or lockless updates for multithreaded languages
• False sharing problems

• Per-thread cache
• No Contention
• Accessing TLS can be expensive in shared libraries

• Method-Local Cache
• Allocated on stack
• No synchronisation needed
• Access is cheap
• Cache only persists for current function duration

Statically Determining Cache Sites

• Policies from the GNUstep Objective-C Runtime
• Superclass method invocation is always cached (rarely changes)
• Class methods are always cached (rarely change)
• Message sends in loops are cached with on-stack cache cheap

cache checks

• Run-time type feedback (as in Self) can improve accuracy

Thread-Safe Inline Caching

• Method lookup returns a cacheable slot (structure) pointer

• Slot contains the method pointer and a version

• Cache contains slot pointer and a version

• Caches must be updated in a way that avoids data races

Thread-Safe Inline Caching Algorithm

�
static int cache_version;

static struct slot *cached_slot;

struct slot *slot = lookup_slot(cls , selector);

cache_version = 0;

slot ->cached_for = cls;

cached_slot = slot;

cache_version = slot ->version; 	� �
• Store 0 in version

• Store slot pointer in cache

• Store version from slot in cache

• All must be sequentially consistent atomic stores

• Slot and version either match, or version is 0

Thread-Safe Inline Caching Lookup

�
struct slot *slot = atomic_read(cached_slot);

if (slot ->version == atomic_read(cached_version)

&&

slot ->cached_for == cls ->isa)

slot ->method(obj , sel);

} 	� �
• Read slot

• Read version

• Check class matches expected

• Call method

Inline Cache-Safe Method Update

• Replace method in slot

• Increment version for all slots with the same selector in
subclasses

• No version increment for the same class (cached slot is still
safe to use)

Prototype-based Languages

• Prototype-based languages (e.g. JavaScript) don’t have
classes

• Any object can have methods

• Caching per class is likely to hit a lot more cases than per
object

Hidden Class Transforms

• Observation: Most objects don’t have methods added to them
after creation

• Create a hidden class for every constructor

• Also speed up property access by using the class contain fixed
offsets for common properties

Type specialisation

• Code paths can be optimised for specific types

• For example, elide dynamic lookup

• Can use static hints, works best with dynamic profiling

• Must have fallback for when wrong

Decompilation

• Branches are expensive

• Code can be emitted to trap on other types (e.g. illegal
instruction causing SIGILL)

• NOPs provide places to insert new instructions

• Stack maps allow mapping from register / stack values to IR
values

• New code paths can be created on demand

Trace-based optimisation

• Branching is expensive

• Dynamic programming languages have lots of method calls

• Common hot code paths follow a single path

• Chain together basic blocks from different methods into a
trace

• Compile with only branches leaving

• Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)

Questions?

