Dynamic Dispatch and Duck Typing

L25: Modern Compiler Design

Late Binding

Static dispatch (e.g. C function calls) are jumps to specific
addresses

Object-oriented languages decouple method name from
method address

One name can map to multiple implementations

Destination must be computed somehow

VTable-based Dispatch

e Tied to class (or interface) hierarchy

e Array of pointers (virtual function table) for method dispatch

struct Foo {

int x;

virtual void foo();
};
void Foo::foo() {}

void callVirtual (Foo &f) {

f.foo();
}
void create() {
Foo f;
callVirtual (f);
}

\S

Calling the method via the vtable

define void @_Z11callVirtualR3Foo (%struct.Foo* Y%
f) uwtable ssp {

%1 = bitcast %struct.Foox*x %f to void (Jstruct.
Foo*) *x%xx

%2 = load void (%struct.Foo*)**xx*x %1, align 8,
'tbaa !0

%3 = load void (%struct.Foox*)**x %2, align 8

tail call void %3(%struct.Foox ¥%f)

ret void

\S

Creating the object

@_ZTV3Foo = unnamed_addr constant [3 x i8x*] [
i8%* null,
i8% bitcast ({ i8*, i8% }* @_ZTI3Foo to i8%*),
i8* bitcast (void (%struct.Foox)x*
@_ZN3Foo3fooEv to i8x%)]

define linkonce_odr void @_ZN3FooC2Ev (}4struct.
Foo* nocapture %this) {
%1 = getelementptr inbounds Y%struct.Foo* Ythis
, i64 0, i32 O
store i32 (...)** bitcast
(i8*x getelementptr inbounds ([3 x i8*]x*
@_ZTV3Foo, 164 0, i64 2) to 132 (...)*x),
132 (...)**xx Y1

Problems with VTable-based Dispatch

e VTable layout is per-class

e Languages with duck typing do not tie dispatch to the class
hierarchy

e Selectors must be more abstract than vtable offsets (e.g.
globally unique integers for method names)

Ordered Dispatch Tables

All methods for a specific class in a sorted list
Binary (or linear) search for lookup
Lots of conditional branches for binary search

Either very big dtables or multiple searches to look at
superclasses

Cache friendly for small dtables (entire search is in cache)
Expensive to add methods (requires lock / RCU)

Sparse Dispatch Tables

Tree structure, 2-3 pointer accesses + offset calculations
Fast if in cache

Pointer chasing is suboptimal for superscalar chips (inherently
serial)

Copy-on-write tree nodes work well for inheritance, reduce
memory pressure

Inverted Dispatch Tables

e Normal dispatch tables are a per-class (or per object) map
from selector to method

e Inverted dispatch tables are a per-selector map from class (or
object) to method

e If method overriding is rare, this provides smaller maps (but
more of them)

Lookup Caching

Method lookup can be slow or use a lot of memory (data
cache)

Caching lookups can give a performance boost

Most object-oriented languages have a small number of
classes used per callsite

Have a per-callsite cache

Callsite Categorisation

e Monomorphic: Only one method ever called
e Huge benefit from inline caching
e Polymorphic: A small number of methods called

e Can benefit from simple inline caching, depending on pattern
e Polymorphic inline caching (if sufficiently cheap) helps

e Megamorphic: Lots of different methods called
e Cache usually slows things down

Simple Inline Cache

[[wobject aMethod:fool];

static struct {
Class cls;
Method method;
} cache = {0, 0};
static SEL sel = compute_selector ("aMethod");
if (object->isa != cache->cls) {
cache->cls = object->isa
cache->method = method_lookup(cls, sel);
}

cache->method (object, sel, foo);

NS

What's wrong with this approach?

Simple Inline Cache

[[wobject aMethod:fool];

static struct {
Class cls;
Method method;
} cache = {0, 0};
static SEL sel = compute_selector ("aMethod");
if (object->isa != cache->cls) {
cache->cls = object->isa
cache->method = method_lookup(cls, sel);
}

cache->method (object, sel, foo);

NS

What's wrong with this approach? Updates? Thread-safety?

Cache Scope

«Or Fr o«

i
v
a
it

Q>

Cache Scope

e Global cache

e Needs locking or lockless updates for multithreaded languages
e False sharing problems

Cache Scope

e Global cache

e Needs locking or lockless updates for multithreaded languages
e False sharing problems

e Per-thread cache

Cache Scope

e Global cache

e Needs locking or lockless updates for multithreaded languages
e False sharing problems

e Per-thread cache

e No Contention
e Accessing TLS can be expensive in shared libraries

Cache Scope

e Global cache

e Needs locking or lockless updates for multithreaded languages
e False sharing problems

e Per-thread cache

e No Contention
e Accessing TLS can be expensive in shared libraries

e Method-Local Cache

Cache Scope

e Global cache

e Needs locking or lockless updates for multithreaded languages
e False sharing problems

e Per-thread cache

e No Contention
e Accessing TLS can be expensive in shared libraries

e Method-Local Cache

Allocated on stack
No synchronisation needed
Access is cheap

[]
[]
[]
e Cache only persists for current function duration

Statically Determining Cache Sites

e Policies from the GNUstep Objective-C Runtime
e Superclass method invocation is always cached (rarely changes)
e Class methods are always cached (rarely change)
e Message sends in loops are cached with on-stack cache cheap
cache checks

¢ Run-time type feedback (as in Self) can improve accuracy

Thread-Safe Inline Caching

Method lookup returns a cacheable slot (structure) pointer
Slot contains the method pointer and a version
Cache contains slot pointer and a version

Caches must be updated in a way that avoids data races

Thread-Safe Inline Caching Algorithm

static int cache_version;

static struct slot *cached_slot;

struct slot *slot = lookup_slot(cls, selector);
cache_version = 0;

slot->cached_for = cls;

cached_slot = slot;

cache_version = slot->version;

Store 0 in version

Store slot pointer in cache

Store version from slot in cache

All must be sequentially consistent atomic stores

Slot and version either match, or version is 0

Thread-Safe Inline Caching Lookup

~

struct slot #*slot = atomic_read(cached_slot);

if (slot->version == atomic_read(cached_version)
&&
slot->cached_for == cls->isa)

slot->method (obj, sel);

Read slot

e Read version

Check class matches expected
Call method

Inline Cache-Safe Method Update

e Replace method in slot

e Increment version for all slots with the same selector in
subclasses

e No version increment for the same class (cached slot is still
safe to use)

Prototype-based Languages

o Prototype-based languages (e.g. JavaScript) don't have
classes

e Any object can have methods
e Caching per class is likely to hit a lot more cases than per
object

Hidden Class Transforms

e Observation: Most objects don’t have methods added to them
after creation

e Create a hidden class for every constructor

e Also speed up property access by using the class contain fixed
offsets for common properties

Type specialisation

Code paths can be optimised for specific types
For example, elide dynamic lookup
Can use static hints, works best with dynamic profiling

Must have fallback for when wrong

Decompilation

Branches are expensive

Code can be emitted to trap on other types (e.g. illegal
instruction causing SIGILL)

NOPs provide places to insert new instructions

Stack maps allow mapping from register / stack values to IR
values

New code paths can be created on demand

Trace-based optimisation

Branching is expensive
Dynamic programming languages have lots of method calls
Common hot code paths follow a single path

Chain together basic blocks from different methods into a
trace

Compile with only branches leaving

Contrast: trace vs basic block (single entry point in both,
multiple exit points in a trace)

Q”eStions?

«or Fr o«

Q>

