
Modern Processor Architectures

L25: Modern Compiler Design



The 1960s - 1970s

• Instructions took multiple cycles

• Only one instruction in flight at once

• Optimisation meant minimising the number of instructions
executed

• Sometimes replacing expensive general-purpose instructions
with specialised sequences of cheaper ones



The 1980s

• CPUs became pipelined

• Optimisation meant minimising pipeline stalls

• Dependency ordering such that results were not needed in the
next instruction

• Computed branches became very expensive when not correctly
predicted



Stall Example

Fetch

Fetch

Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add

add add add addjne jne jne jne jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add

add

add add add

jne

jne jne jne jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add add

add

add addjne

jne

jne jne jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch DecodeDecode Register FetchRegister Fetch

Register FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add add add

add

addjne jne

jne

jne jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode Register Fetch

Register Fetch

Register Fetch

Register Fetch Execute

Execute

ExecuteExecute

Writeback

WritebackWriteback

add add add add

add

jne jne

jne

jne jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode Register Fetch

Register FetchRegister Fetch

Register Fetch

ExecuteExecute

Execute

Execute Writeback

Writeback

Writeback

add add add add addjne jne jne

jne

jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Stall Example

Fetch

Fetch

Decode

Decode Register Fetch

Register FetchRegister Fetch

Register Fetch

ExecuteExecuteExecute

Execute

WritebackWriteback

Writeback

add add add add addjne jne jne jne

jne

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

...

add r1 , r1 , 1

jne r1 , 0, start 	� �



Fixing the Stall

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

add r1 , r1 , 1

...

jne r1 , 0, start 	� �

Is this a good solution?



Fixing the Stall

�
for (int i=100 ; i!=0 ; i--)

{

...

} 	� ��
start:

add r1 , r1 , 1

...

jne r1 , 0, start 	� �
Is this a good solution?



The Early 1990s

• CPUs became much faster than memory

• Caches hid some latency

• Optimisation meant maximising locality of reference,
prefetching

• Sometimes, recalculating results is faster than fetching from
memory



The Mid 1990s

• CPUs became superscalar
• Independent instructions executed in parallel

• CPUs became out-of-order
• Reordered instructions to reduce dependencies

• Optimisation meant structuring code for highest-possible ILP

• Loop unrolling no longer such a big win



Superscalar CPU Pipeline Example: Sandy Bridge

Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shuffle, FpDiv, FpMul, Blend

2. ALU, VecAdd, Shuffle, FpAdd

3. Load / Store address

4. Load / Store address

5. Load / Store data

6. ALU, Branch, Shuffle, VecLogic, Blend



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!



The Late 1990s

• SIMD became mainstream

• Factor of 2-4× speedup when used correctly

• Optimisation meant ensuring data parallelism

• Loop unrolling starts winning again, as it exposes later
optimisation opportunities (more on this later)



The Early 2000s

• (Homogeneous) Multicore became mainstream

• Power efficiency became important

• Parallelism provides both better throughput and lower power

• Optimisation meant exploiting fine-grained parallelism



The Late 2000s

• Programmable GPUs became mainstream

• Hardware optimised for stream processing in parallel

• Very fast for massively-parallel floating point operations

• Cost of moving data between CPU and CPU is high

• Optimisation meant offloading operations to the GPU



The 2010s

• Modern processors come with multiple CPU and GPU cores

• All cores behind the same memory interface, cost of moving
data between them is low

• Increasingly contain specialised accelerators

• Often contain general-purpose (programmable) cores for
specialised workload types (e.g. DSPs)

• Optimisation is hard.



Questions?


