
Introduction

L25: Modern Compiler Design



Course Aims

• Understand the performance characteristics of modern
processors

• Be familiar with strategies for optimising dynamic dispatch for
languages like JavaScript and Objective-C

• Have experience with algorithms for automatically taking
advantage of SIMD, SIMT, and MIMD parallelism



Course Structure

• 8 Lectures

• 8 Supervised practical sessions

• Hands-on work with the LLVM compiler infrastructure



Assessment

• 4 short exercises
• Simple pass / fail
• Due: End of this term

• Longer assessed mini-project report
• Up to 4,000 words
• Due: Start of next term



LLVM

• Began as Chris Lattner’s Masters’ project in UIUC in 2002,
supervised by Vikram Adve

• Now used in many compilers
• ARM / AMD / Intel / nVidia GPU shader compilers
• C/C++ compilers for various platforms
• Lots of domain-specific languages

• LLVM is written in C++. This course will not teach you
C++!



Questions?



Modern Intermediate Representations (IR)
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Reusable IR

• Modern compilers are made from loosely coupled components

• Front ends produce IR

• Middle ‘ends’ transform IR (optimisations)

• Back ends generate native code



Structure of a Modern Compiler

Tokeniser

Parser

AST Builder

Optimiser

Code Generator

Source Code

Token Stream

Parser Actions

Intermediate Representation

Intermediate Representation

Executable Code

As with any other piece of
software using libraries simpli-
fies development.
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Optimisation Passes

• Modular, transform IR (Analysis passes just inspect IR)

• Can be run multiple times, in di↵erent orders

• May not always produce improvements in the wrong order!

• Some intentionally pessimise code to make later passes work
better



Register vs Stack IR

• Stack makes interpreting, naive compilation easier

• Register makes various optimisations easier

• Which ones?



Common Subexpression Elimination: Register IR

Source language:⌥
a = (b+c) * (b+c);  ⌃ ⇧⌥
r1 = load b

r2 = load c

r3 = r1 + r2

r4 = load b

r5 = load c

r6 = r4 + r5

r7 = r3 * r6

store a r6  ⌃ ⇧
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Common Subexpression Elimination: Stack IR

Source language:⌥
a = (b+c) * (b+c);  ⌃ ⇧⌥
load b

load c

add

load b

load c

add

mul

store a  ⌃ ⇧



Common Subexpression Elimination: Stack IR

Source language:⌥
a = (b+c) * (b+c);  ⌃ ⇧⌥
load b

load c

add

dup

mul

store a  ⌃ ⇧



Problems with CSE and Stack IR

• Entire operation must happen at once (no incremental
algorithm)

• Finding identical subtrees is possible, reusing results is harder

• If the operations were not adjacent, must spill to temporary



Hierarchical vs Flat IR

• Source code is hierarchical (contains structured flow control,
scoped values)

• Assembly is flat (all flow control is by jumps)

• Intermediate representations are supposed to be somewhere
between the two



Hierarchical IR

• Easy to express high-level constructs

• Preserves program semantics

• Preserves high-level semantics (variable lifetime, exceptions)
clearly

• Example: WHRIL in MIPSPro/Open64/Path64 and
derivatives



Flat IR

• Easy to map to the back end

• Simple for optimisations to process

• Examples: LLVM IR, CGIR, PTX



Questions?



Modern Processor Architectures
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The 1960s - 1970s

• Instructions took multiple cycles

• Only one instruction in flight at once

• Optimisation meant minimising the number of instructions
executed

• Sometimes replacing expensive general-purpose instructions
with specialised sequences of cheaper ones



The 1980s

• CPUs became pipelined

• Optimisation meant minimising pipeline stalls

• Dependency ordering such that results were not needed in the
next instruction

• Computed branches became very expensive when not correctly
predicted



Stall Example

Fetch

Fetch

Decode

Decode

Register Fetch

Register FetchRegister FetchRegister Fetch

Execute

ExecuteExecuteExecute

Writeback

WritebackWriteback

add

add add add addjne jne jne jne jne

⌥
for (int i=100 ; i!=0 ; i--)

{

...

}  ⌃ ⇧⌥
start:

...

add r1 , r1 , 1

jne r1 , 0, start  ⌃ ⇧
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Fixing the Stall

⌥
for (int i=100 ; i!=0 ; i--)

{

...

}  ⌃ ⇧⌥
start:

add r1 , r1 , 1

...

jne r1 , 0, start  ⌃ ⇧

Is this a good solution?
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The Early 1990s

• CPUs became much faster than memory

• Caches hid some latency

• Optimisation meant maximising locality of reference,
prefetching

• Sometimes, recalculating results is faster than fetching from
memory



The Mid 1990s

• CPUs became superscalar
• Independent instructions executed in parallel

• CPUs became out-of-order
• Reordered instructions to reduce dependencies

• Optimisation meant structuring code for highest-possible ILP

• Loop unrolling no longer such a big win



Superscalar CPU Pipeline Example: Sandy Bridge

Can dispatch up to six instructions at once, via 6 pipelines:

1. ALU, VecMul, Shu✏e, FpDiv, FpMul, Blend

2. ALU, VecAdd, Shu✏e, FpAdd

3. Load / Store address

4. Load / Store address

5. Load / Store data

6. ALU, Branch, Shu✏e, VecLogic, Blend



Branch Predictors

• Achieve 95+% accuracy on modern CPUs

• No cost when branch is correctly predicted

• Long and wide pipelines mean very expensive for the
remaining 5%!



The Late 1990s

• SIMD became mainstream

• Factor of 2-4⇥ speedup when used correctly

• Optimisation meant ensuring data parallelism

• Loop unrolling starts winning again, as it exposes later
optimisation opportunities (more on this later)



The Early 2000s

• (Homogeneous) Multicore became mainstream

• Power e�ciency became important

• Parallelism provides both better throughput and lower power

• Optimisation meant exploiting fine-grained parallelism



The Late 2000s

• Programmable GPUs became mainstream

• Hardware optimised for stream processing in parallel

• Very fast for massively-parallel floating point operations

• Cost of moving data between CPU and CPU is high

• Optimisation meant o✏oading operations to the GPU



The 2010s

• Modern processors come with multiple CPU and GPU cores

• All cores behind the same memory interface, cost of moving
data between them is low

• Increasingly contain specialised accelerators

• Often contain general-purpose (programmable) cores for
specialised workload types (e.g. DSPs)

• Optimisation is hard.



Questions?


