
Lecture 6: functional programming

Lecture 6 1/16

Semantics: what’s it for?

◮ Program verification.

◮ Implementation of existing programming languages.

◮ Design of new programming languages.
“Why is it so hard to design a good programming
language? Naively, one might expect that a
straightforward extension of the conventional notation of
science and mathematics should provide a completely
adequate programming language. But the history of
language design has destroyed this illusion.
“The truth of the matter is that putting languages
together is a very tricky business. When one attempts to
combine language concepts, unexpected and
counterintuitive interactions arise. At this point, even the
most experienced designer’s intuition must be buttressed
by a rigorous definition of what the language means.
“Of course, this is what programming language
semantics is all about.”

John Reynolds, 1990

Lecture 6 2/16

FreshML

It aimed to provide, within an ML-style functional
programming language, higher-order structural recursion
that automatically respects α-conversion of bound
names, without anonymizing binding constructs.

Lecture 6 3/16

FreshML

Design motivated by simple denotational model in Nom:

nominal sets inductively defined using
(−)× (−), [A](−), etc.

+
“α-structural” recursion principle

Lecture 6 3/16

FreshML

Design motivated by simple denotational model in Nom:

nominal sets inductively defined using
(−)× (−), [A](−), etc.

+
“α-structural” recursion principle

How to deal with its freshness side-conditions?

Lecture 6 3/16

α-Structural recursion
For λ-terms:
Theorem.

Given any X ∈ Nom and

f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
s.t.

f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

Can we avoid explicit reasoning about finite support, # and (FCB)
when computing ‘mod α’?

Want definition/computation to be separate from proving.

Lecture 6 4/16

FreshML

Design motivated by simple denotational model in Nom:

nominal sets inductively defined using
(−)× (−), [A](−), etc.

+
“α-structural” recursion principle

How to deal with freshness side-conditions?

Pure: type inference (Gabbay-P)
assertion-checking (Pottier)

Impure: dynamically allocated global names
(Shinwell-P)

Lecture 6 5/16

f̂ = f1 a

f̂(e1 e2) = f2(f̂ e1, f̂ e2)
f̂ (λa. e) = f3(a, f̂ e) if a # (f1, f2, f2)

= λa′. e′ = f3(a′, f̂ e′)

Q: how to get rid of this inconvenient proof obligation?

Lecture 6 6/16

f̂ = f1 a

f̂(e1 e2) = f2(f̂ e1, f̂ e2)
f̂(λa. e) = νa. f3(a, f̂ e) [a # (f1, f2, f2)]

= λa′. e′ = νa′. f3(a′, f̂ e′) OK!

Q: how to get rid of this inconvenient proof obligation?

A: use a local scoping construct νa. (−) for names

Lecture 6 6/16

f̂ = f1 a

f̂(e1 e2) = f2(f̂ e1, f̂ e2)
f̂(λa. e) = νa. f3(a, f̂ e) [a # (f1, f2, f2)]

= λa′. e′ = νa′. f3(a′, f̂ e′) OK!

Q: how to get rid of this inconvenient proof obligation?

A: use a

which one?!

local scoping construct νa. (−) for names

Lecture 6 6/16

Dynamic allocation

◮ Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

◮ Used in Shinwell’s Fresh OCaml = OCaml +
◮ name types and name-abstraction type former
◮ name-abstraction patterns

—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

Lecture 6 7/16

Sample Fresh OCaml code
(* syntax *)

type t;;

type var = t name;;

type term = Var of var | Lam of «var»term | App of term*term;;

(* semantics *)

type sem = L of ((unit -> sem) -> sem) | N of neu

and neu = V of var | A of neu*sem;;

(* reify : sem -> term *)

let rec reify d =

match d with L f -> let x = fresh in Lam(«x»(reify(f(function () -> N(V x)))))

| N n -> reifyn n

and reifyn n =

match n with V x -> Var x

| A(n’,d’) -> App(reifyn n’, reify d’);;

(* evals : (var * (unit -> sem))list -> term -> sem *)

let rec evals env t =

match t with Var x -> (match env with [] -> N(V x)

| (x’,v)::env -> if x=x’ then v() else evals env (Var x))

| Lam(«x»t) -> L(function v -> evals ((x,v)::env) t)

| App(t1,t2) -> (match evals env t1 with L f -> f(function () -> evals env t2)

| N n -> N(A(n,evals env t2)));;

(* eval : term -> sem *)

let rec eval t = evals [] t;;

(* norm : lam -> lam *)

let norm t = reify(eval t);;

Lecture 6 8/16

Dynamic allocation

◮ Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

◮ Used in Shinwell’s Fresh OCaml = OCaml +
◮ name types and name-abstraction type former
◮ name-abstraction patterns

—matching involves dynamic allocation of fresh names

[www.fresh-ocaml.org].

Lecture 6 9/16

Dynamic allocation

◮ Stateful: νa. t means “add a fresh name a′ to the
current state and return t[a′/a]”.

Statefulness disrupts familiar mathematical properties of
pure datatypes. So we will try to reject it in favour of. . .

Lecture 6 9/16

Odersky’s νa. (−)

[M. Odersky, A Functional Theory of Local Names, POPL’94]

◮ Unfamiliar—apparently not used in practice (so far).

◮ Pure equational calculus, in which local scopes
‘intrude’ rather than extrude (as per dynamic
allocation):

νa. (λx. t) ≈ λx. (νa. t) [a 6= x]
νa. (t , t′) ≈ (νa. t , νa. t′)

◮ New: a straightforward semantics using nominal
sets equipped with a ‘name-restriction operation’. . .

Lecture 6 10/16

Name-restriction
A name-restriction operation on a nominal set X is a
morphism (−)\(−) ∈ Nom(A × X, X) satisfying

◮ a # a\x

◮ a # x ⇒ a\x = x

◮ a\(b\x) = b\(a\x)

Equivalently, a morphism ρ : [A]X → X making

X
κ

idX

[A]X

ρ

[A][A]X
δ

[A]ρ

[A][A]X
[A]ρ

[A]X

ρ

[A]X

ρ
X X

commute, where κ x = 〈a〉x for some (or indeed any) a # x; and where
δ(〈a〉〈a′〉x) = 〈a′〉〈a〉x.

Lecture 6 11/16

Given any X ∈ Nom and

f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

s.t.

(∀a) a # (f1, f2, f3) ⇒ (∀x) a # f3(a, x) (FCB)

∃! f̂ ∈ Λ �fs X
.t.

f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = f3(a, f̂ e) if a # (f1, f2, f3)

If X has a name restriction operation (−)\(−), we can
trivially satisfy (FCB) by using a\ f3(a, x) in place of
f3(a, x).

Lecture 6 12/16

Given any X ∈ Nom and

f1 ∈ A �fs X
f2 ∈ X × X �fs X
f3 ∈ A × X �fs X

and a restriction operation (−)\(−) on X,

∃! f̂ ∈ Λ �fs X
.t.

f̂ a = f1 a

f̂ (e1 e2)= f2(f̂ e1, f̂ e2)
f̂(λa.e) = a\ f3(a, f̂ e)

Is requiring X to carry a name-restriction operation
much of a hindrance for applications?

Not much. . .

Lecture 6 12/16

Examples of name-restriction

◮ For N: a\n , n

Lecture 6 13/16

Examples of name-restriction

◮ For N: a\n , n

◮ For A
′ , A ⊎ {anon}:

a\a , anon

a\a′ , a′ if a′ 6= a

a\anon , anon

Lecture 6 13/16

Examples of name-restriction

◮ For N: a\n , n

◮ For A
′ , A ⊎ {anon}:

a\t , t[anon/a]

◮ For Λ
′ , {t ::= V a | A(t , t) | L(a . t) | anon}/=α:

a\[t]α , [t[anon/a]]α

Lecture 6 13/16

Examples of name-restriction

◮ For N: a\n , n

◮ For A
′ , A ⊎ {anon}:

a\t , t[anon/a]

◮ For Λ
′ , {t ::= V a | A(t , t) | L(a . t) | anon}/=α:

a\[t]α , [t[anon/a]]α

◮ Nominal sets with name-restriction are closed under products,

coproducts, name-abstraction and exponentiation by a nominal

set.
Lecture 6 13/16

λαν-Calculus

[AMP, Structural Recursion with Locally Scoped Names, JFP 21(2011)235–286]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name, with terms for
◮ names, a : Name (a ∈ A)
◮ equality test, _ = _ : Name � Name � Bool

◮ name-swapping,
t : T

(a ≀ a′)t : T

◮ locally scoped names
t : T

νa. t : T
(binds a)

with Odersky-style computation rules, e.g.

νa. λx. t = λx. νa. t

Lecture 6 14/16

λαν-Calculus

[AMP, Structural Recursion with Locally Scoped Names, JFP 21(2011)235–286]

is standard simply-typed λ-calculus with booleans and
products, extended with:

◮ type of names, Name
◮ name-abstraction types, Name . T, with terms for

◮ name-abstraction,
t : T

αa. t : Name . T
(binds a)

◮ unbinding,
t : Name . T t′ : T ′

let a . x = t in t′ : T ′ (binds a & x in t′)

with computation rule that uses local scoping

let a . x = αa. t in t′ = νa. (t′[t/x])

Lecture 6 14/16

λαν-Calculus

Denotational semantics. λαν-calculus has a
straightforward interpretation in Nom that is sound for
the computation rules—types denote nominal sets
equipped with a name-restriction operation:

JBoolK = {true, false}
JNameK = A ⊎ {anon}

JT × T ′K = JTK× JT ′K
JT � T ′K = JTK �fs JTK

JName . TK = [A]JTK

Jνa. aK

See [NSB, Section 9.4].

Lecture 6 15/16

λαν-calculus as a FP language

To do: revisit FreshML using Odersky-style local names
rather than dynamic allocation (cf. [Lösch+AMP, POPL 2013]

Lecture 6 16/16

‘Nominal Agda’ (???)

Can the λαν-calculus be extended from simple to dependent types?

names Var : Set

data Term : Set where --(possibly open) λ-terms mod α
V : Var -> Term --variable

A : (Term × Term)-> Term --application term

L : (Var . Term) -> Term --λ-abstraction

/ : Term -> Var -> Term -> Term --capture-avoiding substitution

(t / x)(V x′) = if x = x′ then t else V x′

(t / x)(A(t′ , t′′)) = A((t / x)t′ , (t / x)t′′)

(t / x)(L(x′ . t′)) = L(x′ . (t / x)t′)

data _==_ (t : Term) : Term -> Set where --intensional equality

Refl : t == t

Lecture 6 16/16

‘Nominal Agda’ (???)

Can the λαν-calculus be extended from simple to dependent types?

names Var : Set

data Term : Set where --(possibly open) λ-terms mod α
V : Var -> Term --variable

A : (Term × Term)-> Term --application term

L : (Var . Term) -> Term --λ-abstraction

/ : Term -> Var -> Term -> Term --capture-avoiding substitution

(t / x)(V x′) = if x = x′ then t else V x′

(t / x)(A(t′ , t′′)) = A((t / x)t′ , (t / x)t′′)

(t / x)(L(x′ . t′)) = L(x′ . (t / x)t′)

data _==_ (t : Term) : Term -> Set where --intensional equality

Refl : t == t --is term equality mod α

eg : (x x′ : Var) ->

((V x) / x′)(L(x . V x′)) == L(x′ . V x) --(λx.x′)[x/x′] = λx′.x
eg x x′ = {! !}

Lecture 6 16/16

	Lecture 6: functional programming

