## L114 Lexical Semantics Session 3: Lexical Relations and Taxonomies

#### Simone Teufel

MPhil in Advanced Computer Science Computer Laboratory Natural Language and Information Processing (NLIP)



Simone.Teufel@cl.cam.ac.uk

2013/2014

A (1) > A (1) > A

.∋⇒

## Last time: WSD

- "Simpler" algorithms for Word Sense Disambiguation (WSD)
  - Lesk
  - Supervised ML
  - Yarowsky

#### Today:

- WordNet and the lexical relations it recognises
- Theory on lexical relations
  - Hyponymy
  - Meronymy
- Taxonomies
- A WN-based WSD algorithm

## "interest/3" – a closer look

 $\underline{S}$ : (n) interest (a fixed charge for borrowing money; usually a percentage of the amount borrowed) "how much interest do you pay on your mortgage?"

direct hyponym / full hyponym

- S: (n) compound interest (interest calculated on both the principal and the accrued interest)
- S: (n) simple interest (interest paid on the principal alone)

direct hyponym/ inherited hypernym / sister term:

- <u>S:</u> (n) fixed charge, fixed cost, fixed costs (a periodic charge that does not vary with business volume (as insurance or rent or mortgage payments etc.))
  - S: (n) charge (the price charged for some article or service) "the admission charge"
    - S: (n) cost (the total spent for goods or services including money and time and labor)
      - <u>S:</u> (n) outgo, spending, expenditure, outlay (money paid out; an amount spent)
        - <u>S:</u> (n) transferred property, transferred possession (a possession whose ownership changes or lapses)
          - <u>S:</u> (n) possession (anything owned or possessed)
            - S: (n) relation (an abstraction belonging to or characteristic of two entities or parts together)
              - <u>S:</u> (n) <u>abstraction</u>, <u>abstract entity</u> (a general concept formed by extracting common features from specific examples)
                - <u>S:</u> (n) <u>entity</u> (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

э

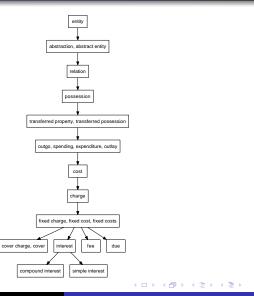
### "interest/3" – co-hyponyms

#### direct hyponym/ inherited hypernym / sister term:

- •<u>S:</u> (n) fixed charge, fixed cost, fixed costs (a periodic charge that does not vary with business volume (as insurance or rent or mortgage payments etc.))
  - S: (n) cover charge, cover (a fixed charge by a restaurant or nightclub over and above the charge for food and drink)
  - <u>S:</u> (n) interest (a fixed charge for borrowing money; usually a percentage of the amount borrowed) "how much interest do you pay on your mortgage?"
  - <u>S:</u> (n) fee (a fixed charge for a privilege or for professional services)
  - <u>S: (n) due</u> (a payment that is due (e.g., as the price of membership)) "the society dropped him for non-payment of dues"

< ロ > < 同 > < 回 > < 回 >

## "interest/4" – a closer look


S: (n) interest, <u>stake</u> ((law) a right or legal share of something; a financial involvement with something) *"they have interests all over the world"; "a stake in the company's future"* 

direct hyponym/ inherited hypernym / sister term:

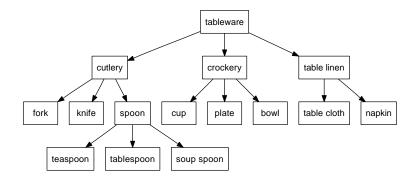
- <u>S</u>: (n) <u>share</u>, <u>portion</u>, <u>part</u>, <u>percentage</u> (assets belonging to or due to or contributed by an individual person or group) "he wanted his share in cash"
  - $\underline{S}$ : (n) <u>assets</u> (anything of material value or usefulness that is owned by a person or company)
    - <u>S</u>: (n) possession (anything owned or possessed)
      - <u>S</u>: (n) <u>relation</u> (an abstraction belonging to or characteristic of two entities or parts together)
        - <u>S</u>: (n) <u>abstraction</u>, <u>abstract entity</u> (a general concept formed by extracting common features from specific examples)
          - <u>S</u>: (n) entity (that which is perceived or known or inferred to have its own distinct existence (living or nonliving))

イロト イポト イヨト イヨト

## As a hierarchical graph



## Lexical Relations


- Hyponomy
  - Apple is a hyponym of fruit.
  - Fruit is a superordinate/hypernym of apple.
- Meronomy
  - Finger is a meronym (rarely: partonym) of hand.
  - Hand is a holonym of finger.

## Taxonomies

- Taxonomies are a subtype of hyponymy.
  - *horse:animal* forms part of a taxonomy.
  - *stallion:horse* does not, although it is a hyponymy.
- a taxonym further specifies the supertype's core characteristic:
  - A strawberry blonde is a type of blonde.
  - ?A blonde is a type of woman.
- In a taxonomy, there is a unique mother constraint
- Example: tableware

- ∢ ∃ →

## Example taxonomy



2

・ロン ・四 と ・ ヨ と ・ ヨ と

# **Basic Level categories**

Examples:

- vehicle-car-hatchback
- object-implement-cutlery-spoon-teaspoon

Properties:

- Pattern of behavioural interaction (you could mime how you'd interact with it)
- Visual image (you could visualise it)
- Part-whole relationships make sense (handle-implement?)
- Membership can be most rapidly decided (Alsatian-dog-mammal)
- Neutral, everyday reference
- Morphologically simple, original
- Level at which best categories are formed: maximize distintness from neighbours, internal homogeneity, informativeness

## Super- and subordinate level categories

Superordinate categories:

- less good categories because not internally homogenous
- but distinct from sister categories
- often change mass/count properties with basic categories (metals-silver but footwear-shoe)

Subordinate level categories:

- show low distinctiveness from sister categories
- but are internally homogenous
- names frequently morphologically complex (e.g., *herring gull, coffee cup*

- 4 回 ト 4 ヨ ト

## Taxonomies in everyday language

- Taxonomic hierarchies in everyday language rarely have more than 5 or 6 levels, typically fewer
- Taxonomic hierarchies appear mostly as fragments, not as fully developed structures.
- Expert, technical vocabularies (zoological ones included) do not show such limiations

## Example for an everyday taxonomy

#### Clothing

- Taxonyms at basic level: trousers, jacket, dress, skirt, shoe...
- Restricted perspective terms
  - where worn on body (footwear, headwear; all distinct)
  - when worn (*eveningwear*)
  - worn while doing what (sportswear, outdoor wear, leisurewear)
- Default category: everyday, publicly observable, not-for-special purpose clothing; unnamed.
- Virtually impossible to create a well-formed hierarchy of clothing terms

A (1) > A (1) > A

# Clothing, problems

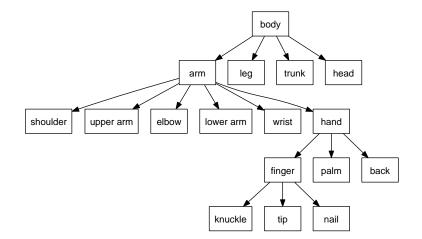
- Each perspective potentially yields a separate hierarchy: *shoe* is hyponymic to *evening wear* and *footwear*.
- Cross-classification if perspective is changed. *tennis shoes* hyponym of *sportswear* and *high heels* hyponym of *evening wear*, but both hyponyms of *shoe*
- Different hierarchies can intersect in various ways
- Senses are not fully lexically distinguished *dress/1* is a taxonym of neutralwear, and also a hyponym of *dress/2* (a mass term) with a more general sense

A (1) > A (1) > A

### Exercise

#### Create the best taxonomy you can from the following word forms:

| tablecloth | wine glass    | table mat | salt       | napkin        |
|------------|---------------|-----------|------------|---------------|
| teaspoon   | bread knife   | coaster   | tumbler    | vinegar       |
| water jug  | fork          | cake dish | saucer     | napkin ring   |
| knife      | butter knife  | corkscrew | cake slice | pepper        |
| breadboard | butter dish   | soupspoon | teaspoon   | serving spoon |
| soup bowl  | dessert spoon | mug       |            |               |


э

## Taxonomies in other languages

- English sense of animal = { mammals, amphibians, reptiles } does not exist in French or German
- { *walnuts, hazelnuts, almonds* ... } do not form a natural class *nuts* in French or Italian.
- In English, *marmelade* is not a hyponym of *jam*
- Boots and *sandals* are not (necessarily) hyponyms of *shoe* in English

・ 「 ト ・ ヨ ト ・ ヨ ト

## Example meronymy



2

・ロン ・四 と ・ ヨ と ・ ヨ と

# Meronymy

- Much less sharply defined relationship than hyponymy.
- Is a lid a part of the pot?
- What makes a good part:
  - necessary/functionality to the proper functioning of holonym
  - integrality/attachedness
    - The hand is attached to the arm
    - ? The fingers are attached to the hand
  - Moves indepently from holonym

# Meronymy

- Has the same range as holonym
  - There are no hands without fingers and no fingers without hands.
  - There are doors without handles and handles without doors
- Exist at the same time unlike ingredients.
  - ?Milk is part of the cake
- Parts and wholes are of same ontological type.
  - ?Wood is part of the table (material vs. object)
  - ?A nerve is part of a leg (systemic vs. segmental parts)

#### More on meronymy

- Part-of vs. Piece-of relationship
  - Pieces are always concrete
  - Replicas of pieces are not pieces (a piece must have once been part of an undamaged whole); but: spare parts
  - Motivated vs arbitrary boundaries
  - A part has a function
- Meronymy is often not transitive:
  - Handle is part of a door
  - Door is part of a house
  - ? Handle is part of a door
- Co-meronymy is a relation of exclusion; sister parts do not overlap. If X and Z are co-meronyms of Y, then no meronym of X is a meronym of Z.

## Meronomies

- Example: segmental version of human body
- Lexical gaps: meaning not salient enough to merit lexical distinction (palm+back of hand=?; watch+clock=?)
- Automeronymy (if a lexical gaps filled by extended sense of item directly below or above; *body* (*trunk*)+*head=body*)
- Examples from other languages:
  - Greek xeri/podi is hand/foot up to elbow/knee
  - Turkish: thumb is simply "big finger"
  - Conceptual gap: distinction not perceived to exist (dark and light blue; Russian)

A (1) > A (1) > A

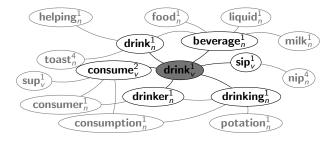
# Graph-Based WSD (Navigli and Lapata; 2010)

- The internal structure of sense inventories can be exploited even further.
- Represent Wordnet as a graph whose nodes are synsets and whose edges are relations between synsets.
- The edges are not labeled, i.e., the type of relation between the nodes is ignored.

Figures and tables in this section from Navigli and Lapata (2010).

- 4 回 ト 4 ヨ ト

# Example


Wordnet Synsets (senses) of drink/v:

- {drink<sup>1</sup><sub>v</sub>, *imbibe*<sup>3</sup><sub>v</sub>} (take in liquids)
- {drink<sup>2</sup><sub>v</sub>, booze<sup>1</sup><sub>v</sub>, fuddle<sup>2</sup><sub>v</sub>} (consume alcohol)
- { $toast_v^2$ , drink<sub>v</sub><sup>3</sup>,  $pledge_v^2$ ,  $salute_v^1$ ,  $wassail_v^2$ } (propose a toast)
- {drink in<sup>1</sup><sub>v</sub>, drink<sup>4</sup><sub>v</sub>} (be fascinated, pay close attention)
- {drink<sup>5</sup><sub>v</sub>, tope<sup>1</sup><sub>v</sub>} (be an alcoholic)

Wordnet Synsets (senses) of milk/n:

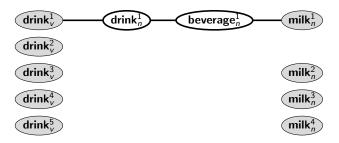
- {milk<sub>n</sub><sup>1</sup>} (a white nutritious liquid secreted by mammals and used as food by human beings)
- {milk<sub>n</sub><sup>2</sup>} (produced by mammary glands of female mammals for feeding their young)
- {Milk<sup>3</sup><sub>n</sub>, Milk River<sup>1</sup><sub>n</sub>} (a river that rises in the Rockies in northwestern Montana and flows eastward to become a tributary of the Missouri River)
- {milk<sup>4</sup><sub>n</sub>} (any of several nutritive milklike liquids)

## Graph for first sense of drink



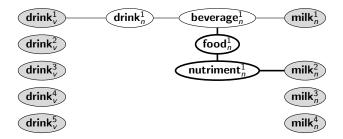
æ

・ロト ・回ト ・ヨト ・ヨト


Disambiguation algorithm:

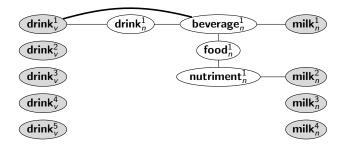
- Use the Wordnet graph to construct a graph that incorporates each content word in the sentence to be disambiguated;
- Rank each node in the sentence graph according to its importance using graph connectivity measures;
  - Local measures: give a connectivity score to an individual node in the graph; use this directly to select a sense;
  - **Global measures:** assign a connectivity score the to the graph as a whole; apply the measure to each interpretation and select the highest scoring one.

- Given a word sequence σ = (w<sub>1</sub>, w<sub>2</sub>,..., w<sub>n</sub>), find all possible word senses of all words; call this set V<sub>σ</sub>.
- Perform a depth-first search of the Wordnet graph: every time we encounter a node v' ∈ V<sub>σ</sub> (v' ≠ v) along a path v → v<sub>1</sub> → ··· → v<sub>k</sub> → v' of length L, we add all intermediate nodes and edges on the path from v to v' to the graph G.
- For tractability, we set the maximum path length to 6.


- 4 同 ト 4 ヨ ト 4 ヨ ト

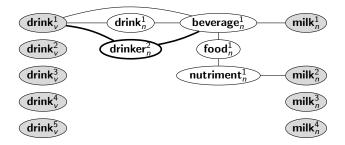
Example: graph for drink milk.




э

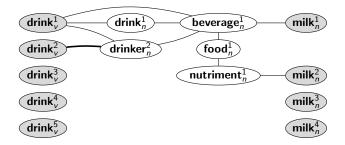
Example: graph for drink milk.




э

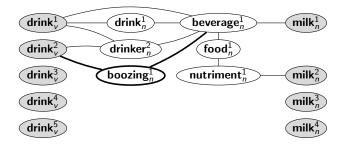
Example: graph for drink milk.




э

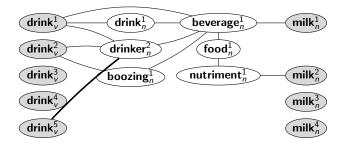
Example: graph for drink milk.




э

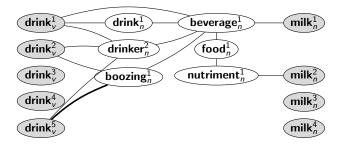
Example: graph for drink milk.




э

Example: graph for drink milk.




э

Example: graph for drink milk.



э

Example: graph for drink milk.



We get  $3 \cdot 2 = 6$  interpretations, i.e., subgraphs obtained when only considering one connected sense of *drink* and *milk*.

(a)

## A Local Measure: Degree Centrality

Assume a graph with nodes V and edges E. Then the **degree** of  $v \in V$  is the number of edges terminating in it:

$$deg(v) = |\{\{u, v\} \in E : u \in V\}|$$
(1)

**Degree centrality** is the degree of a node normalized by the maximum degree:

$$C_D(v) = \frac{\deg(v)}{|V| - 1} \tag{2}$$

(日) (同) (日) (日)

For the previous example,  $C_D(drink_v^1) = \frac{3}{14}$ ,  $C_D(drink_v^2) = C_D(drink_v^5) = \frac{2}{14}$ , and  $C_D(milk_n^1) = C_D(milk_n^2) = \frac{1}{14}$ . So we pick  $drink_v^1$ , while  $milk_n$  is tied.

A Global Measure: Edge Density

**Edge density** of a graph is the number of edges compared to a complete graph with |V| nodes (given by  $\binom{|V|}{2}$ ):

$$ED(G) = \frac{|E(G)|}{\binom{|V|}{2}} \tag{3}$$

(日) (同) (三) (三)

The first interpretation of **drink milk** has  $ED(G) = \frac{6}{\binom{5}{2}} = \frac{6}{10} = 0.60$ , the second one  $ED(G) = \frac{5}{\binom{5}{2}} = \frac{5}{10} = 0.50$ .

## Evaluation on SemCor

|         |               | WordNet |       | EnWordNet |       |
|---------|---------------|---------|-------|-----------|-------|
| Measure |               | All     | Poly  | All       | Poly  |
| Random  |               | 39.13   | 23.42 | 39.13     | 23.42 |
| ExtLesk |               | 47.85   | 34.05 | 48.75     | 35.25 |
| Degree  |               | 50.01   | 37.80 | 56.62     | 46.03 |
| Loca    | PageRank      | 49.76   | 37.49 | 56.46     | 45.83 |
|         | HITS          | 44.29   | 30.69 | 52.40     | 40.78 |
|         | KPP           | 47.89   | 35.16 | 55.65     | 44.82 |
|         | Betweenness   | 48.72   | 36.20 | 56.48     | 45.85 |
| loba    | Compactness   | 43.53   | 29.74 | 48.31     | 35.68 |
|         | Graph Entropy | 42.98   | 29.06 | 43.06     | 29.16 |
|         | Edge Density  | 43.54   | 29.76 | 52.16     | 40.48 |
|         | First Sense   | 74.17   | 68.80 | 74.17     | 68.80 |

æ

(日) (四) (三) (三)

## Evaluation on Semeval All-words Data

| System                          | F    |
|---------------------------------|------|
| Best Unsupervised (Sussex)      | 45.8 |
| ExtLesk                         | 43.1 |
| Degree Unsupervised             | 52.9 |
| Best Semi-supervised (IRST-DDD) | 56.7 |
| First Sense                     | 62.4 |
| Best Supervised (GAMBL)         | 65.2 |

э

▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶

# Discussion

#### Strengths:

- exploits the structure of the sense inventory/dictionary;
- conceptually simple, doesn't require any training data, not even a seed set;
- achieves good performance for unsupervised system.

#### Weaknesses:

- performance not good enough for real applications (F-score of 0.53 on Semeval);
- sense inventories take a lot of effort to create (Wordnet has been under development for more than 15 years).

# Summary

- Ontologies such as WN are based on lexical relations such as hyponomy (subtype taxonomy) and meronymy, which are non-trivial phenomena in the real world
- Unsupervised graph-based WSD finds the most connected nodes (senses) in a graph of lexical relations that represents all possible interpretations of a sentence.

## Reading for today

#### Cruse chapters 3.2.3.6 (p. 61/62); 6 and 8

**Navigli and Lapata** (2010): An Experimental Study of Graph Connectivity for Unsupervised Word Sense Disambiguation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 32(4), IEEE Press, 2010, pp. 678-692.

A (1) > A (1) > A