L11: Algebraic Path Problems with applications to Internet Routing Lecture 16

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2013

Sobrinho's encoding of the Gao/Rexford rules

Additive component uses min with

- 0 is the type of a downstream route,
- 1 is the type of a peer route, and
- 2 is the type of an <u>upstream</u> route.
- $\bullet \infty$ is the type of no route.

Multiplicative component

	0	1	_	∞
0	0		∞	∞
1	1	∞	∞	∞
2	2	2	2	∞
∞	∞	∞	∞	∞

Note that this is not associative! In addition, this models just the "local preference" component of BGP. Not this must be combined with a lexicographic product. Can we improve on this?

Important properties for algebraic structures of the form ($S, \oplus, F, \overline{0}, \overline{1}$)

property	definition
D	$\forall a,b \in S, \ f \in F : \ f(a \oplus b) = f(a) \oplus f(b)$
INFL	$\forall a \in S, \ f \in F : \ a \le f(a)$
S.INFL	$\forall a \in S, \ F \in F : \ a \neq \overline{0} \implies a < f(a)$
K	$\forall a \in S, \ F \in F : \ a \neq \overline{0} \implies a < f(a)$ $\forall a, b \in S, \ f \in F : \ f(a) = f(b) \implies a = b$
$K_{\overline{0}}$	$\forall a,b \in S, f \in F : f(a) = f(b) \implies (a = b \lor f(a) = \overline{0})$
С	$\forall a,b \in S, \ f \in F : \ f(a) = f(b)$
$C_{\overline{0}}$	$\forall a,b \in S, f \in F : f(a) \neq f(b) \Longrightarrow (f(a) = \overline{0} \lor f(b) = \overline{0})$

Stratified Shortest-Paths Metrics

Metrics

$$(s, d)$$
 or ∞

- $s \neq \infty$ is a stratum level in $\{0, 1, 2, ..., m-1\}$,
- d is a "shortest-paths" distance,
- Routing metrics are compared lexicographically

$$(s_1, d_1) < (s_2, d_2) \iff (s_1 < s_2) \lor (s_1 = s_2 \land d_1 < d_2)$$

Stratified Shortest-Paths Policies

Policy has form (f, d)

$$(f, d)(s, d') = \langle f(s), d + d' \rangle$$

 $(f, d)(\infty) = \infty$

where

$$\langle s, t \rangle = \begin{cases} \infty & \text{(if } s = \infty) \\ (s, t) & \text{(otherwise)} \end{cases}$$

Constraint on Policies

- Either f is inflationary and 0 < d,
- or f is strictly inflationary and $0 \le d$.

Why?

$$(S.INFL(S) \lor (INFL(S) \land S.INFL(T))) \implies S.INFL(S \overrightarrow{\times}_{\overline{0}} T).$$

All Inflationary Policy Functions for Three Strata

	0	1	2	D	K_∞	C_∞		0	1	2	D	K_∞	C_∞
а	0	1	2	*	*		m	2	1	2			
b	0	1	∞	*	*		n	2	1	∞		*	
С	0	2	2	*			0	2	2	2	*		*
d	0	2	∞	*	*		р	2	2	∞	*		*
е	0	∞	2		*		q	2	∞	2			*
f	0	∞	∞	*	*	*	r	2	∞	∞	*	*	*
g	1	1	2	*			s	∞	1	2		*	
h	1	1	∞	*		*	t	∞	1	∞		*	*
i	1	2	2	*			u	∞	2	2			*
j	1	2	∞	*	*		V	∞	2	∞		*	*
k	1	∞	2		*		w	∞	∞	2		*	*
I	1	∞	∞	*	*	*	x	∞	∞	∞	*	*	*

Almost shortest paths

	0	1	2	D	K_∞	interpretation
а	0	1	2	*	*	+0
j	1	2	∞	*	*	+1
r	2	∞	∞	*	*	+2
X	∞	∞	∞	*	*	+3
b	0	1	∞	*	*	filter 2
е	0	∞	2		*	filter 1
f	0	∞	∞	*	*	filter 1, 2
S	∞	1	2		*	filter 0
t	∞	1	∞		*	filter 0, 2
W	∞	∞	2		*	filter 0, 1

Shortest paths with filters, over INF₃

Note that the path 5, 4, 2, 1 with weight (1, 3) would be the globally best path from node 5 to node 1. But in this case, poor node 5 is left with no path! The locally optimal solution has $\mathbf{R}(5, 1) = \infty$.

Both D and $K_{\overline{0}}$

This makes combined algebra distributive!

	0	1	2
а	0	1	2
b	0	1	∞
d	0	2	∞
f	0	∞	∞
j	1	2	∞
-	1	∞	∞
r	2	∞	∞
X	∞	∞	∞

Why?

$$(\mathsf{D}(S) \land \mathsf{D}(T) \land \mathsf{K}_{\overline{0}}(S)) \implies \mathsf{D}(S \,\vec{\times}_{\overline{0}} \, T)$$

BGP: standard view

- 0 is the type of a downstream route,
- 1 is the type of a peer route, and
- 2 is the type of an <u>upstream</u> route.

	0	1	2
f	0	∞	∞
-	1	∞	∞
0	2	2	2

"Autonomous" policies

	0	1	2	D	K_∞
f	0	∞	∞	*	*
h	1	1	∞	*	
I	1	∞	∞	*	*
0	2	2	2	*	
р	2	2	∞	*	
	2	∞	∞ 2		
q r	2	∞	∞	*	*
t	∞	1	∞		*
u	∞	2	2		
V	∞	2	∞		*
W	∞	∞	2		*
X	∞	∞	∞	*	*