L11: Algebraic Path Problems with applications to Internet Routing Lectures 12, 13

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2013

L11: Algebraic Path Problems with applica

< 回 > < 三 > < 三 >

Algebra of Monoid Endomorphisms (AME) (See Gondran and Minoux 2008)

Let $(S, \oplus, \overline{0})$ be a commutative monoid.

 $(S, \oplus, F \subseteq S \to S, \overline{0})$ is an algebra of monoid endomorphisms (AME) if

•
$$\forall f \in F, f(\overline{0}) = \overline{0}$$

•
$$\forall f \in F, \ \forall b, c \in S, \ f(b \oplus c) = f(b) \oplus f(c)$$

I will declare these as optional

• $\forall f, g \in F, f \circ g \in F$ (closed)

•
$$\exists i \in F, \ \forall s \in S, \ i(s) = s$$

•
$$\exists \omega \in F, \forall n \in N, \omega(n) = \hat{0}$$

Note: as with semirings, we may have to drop some of these axioms in order to model Internet routing ...

< ロ > < 同 > < 回 > < 回 >

So why do we want AMEs?

Each (closed with ω and *i*) AME can be viewed as a semiring of functions. Suppose $(S, \oplus, F, \overline{0})$ is an algebra of monoid endomorphisms. We can turn it into a semiring

$$\mathbb{F} = (F, \ \hat{\oplus}, \ \circ, \ \omega, \ i)$$

where $(f \oplus g)(a) = f(a) \oplus g(a)$ and $(f \circ g)(a) = f(g(a))$.

But functions are hard to work with

- All algorithms need to check equality over elements of a semiring
- f = g means $\forall a \in S, f(a) = g(a)$

S can be very large, or infinite

Lexicographic product of AMEs

$$(S, \oplus_S, F) \stackrel{\prec}{\times} (T, \oplus_T, G) = (S \times T, \oplus_S \stackrel{\vee}{\times} \oplus_T, F \times G)$$

Theorem 11.3

$\mathsf{D}(S \times T) \iff \mathsf{D}(S) \wedge \mathsf{D}(T) \wedge (\mathsf{C}(S) \vee \mathsf{K}(T))$

Where

Property Definition

D	$\forall a, b, f, f(a \oplus b) = f(a) \oplus f(b)$
С	$\forall a, b, f, f(a) = f(b) \implies a = b$
К	$\forall a, b, f, f(a) = f(b)$

< 回 > < 三 > < 三 >

Functional Union of AMEs

$$(S, \oplus, F) +_m (S, \oplus, G) = (S, \oplus, F + G)$$

Left and Right

right

$$\mathsf{right}(S,\oplus,F) = (S,\oplus,\{i\})$$

left

$$\mathsf{left}(\mathcal{S},\oplus,\mathcal{F})=(\mathcal{S},\oplus,\mathcal{K}(\mathcal{S}))$$

where K(S) represents all constant functions over S. For $a \in S$, define the function $\kappa_a(b) = a$. Then $K(S) = \{\kappa_a \mid a \in S\}$.

Facts

The following are always true.

```
D(\mathbf{right}(S))D(\mathbf{left}(S))C(\mathbf{right}(S))\kappa(\mathbf{left}(S))
```

(assuming \oplus is idempotent)

Scoped Product (Think iBGP/eBGP)

$$S\Theta T = (S \times \text{left}(T)) +_{\text{m}} (\text{right}(S) \times T)$$

Theorem 11.2

$$D(S\Theta T) \iff D(S) \wedge D(T).$$

$$\begin{array}{l} \mathsf{D}(S \ominus T) \\ \mathsf{D}((S \stackrel{\times}{\times} \mathsf{left}(T)) +_{\mathsf{m}} (\mathsf{right}(S) \stackrel{\times}{\times} T)) \\ \Longleftrightarrow \mathsf{D}(S \stackrel{\times}{\times} \mathsf{left}(T)) \wedge \mathsf{D}(\mathsf{right}(S) \stackrel{\times}{\times} T) \\ \Leftrightarrow \mathsf{D}(S) \wedge \mathsf{D}(\mathsf{left}(T)) \wedge (\mathsf{C}(S) \vee \mathsf{K}(\mathsf{left}(T))) \\ \wedge \mathsf{D}(\mathsf{right}(S)) \wedge \mathsf{D}(T) \wedge (\mathsf{C}(\mathsf{right}(S)) \vee \mathsf{K}(T)) \\ \Leftrightarrow \mathsf{D}(S) \wedge \mathsf{D}(T) \end{array}$$

Lexicographic Products in Metarouting. Alexander Gurney, Timothy G. Griffin. International Conference on Network Protocols (ICNP), 2007, 2

tgg22 (cl.cam.ac.uk)

Routing Matrix vs. Path Matrix

- Inspired by the the Locator/ID split work
 - See Locator/ID Separation Protocol (LISP)
- Let's make a distinction between <u>infrastructure</u> nodes *V* and <u>destinations</u> *D*.
- Assume $V \cap D = \{\}$
- **M** is a $V \times D$ mapping matrix
 - M(v, d) ≠ ∞ means that destination (identifier) d is somehow attached to node (locator) v

不得る とうちょうちょ

Example of routing = path finding + mapping

Routing matrix (paths implicit)

More Interesting Example : "Hot-Potato" Idiom — find attachment that is closest

Routing matrix

General Case

G = (V, E), *n* is the size of *V*.

A $n \times n$ (left) path matrix L solves an equation of the form

 $\mathsf{L} = (\mathsf{A} \otimes \mathsf{L}) \oplus \mathsf{I},$

over semiring *S*.

D is a set of destinations, with size d.

A $n \times d$ routing matrix is defined as

 $\textbf{F}=\textbf{L} \rhd \textbf{M},$

over some structure $(N, \Box, \triangleright)$, where $\triangleright \in S \rightarrow (N \rightarrow N)$.

3

routing = path finding + mapping

Does this make sense?

$$\mathbf{F}(i, d) = (\mathbf{L} \triangleright \mathbf{M})(i, d) = \Box_{q \in V} \mathbf{L}(i, q) \triangleright \mathbf{M}(q, d).$$

- Once again we are leaving paths implicit in the construction.
- Routing paths are best paths to egress nodes, selected with respect to □-minimality.
- —-minimality can be very different from selection involved in path finding.

A (10) A (10)

When we are lucky ...

matrix	solves	
A *	$L=(A\otimesL)\oplusI$	
A * ⊳ M	$F = (A \triangleright F) \Box M$	

When does this happen?

When (N, \Box, \rhd) is a (left) semi-module over the semiring S^a .

^aA model of Internet routing using semi-modules. John N. Billings and Timothy G. Griffin. RelMiCS11/AKA6 2009

3

< 日 > < 同 > < 回 > < 回 > < □ > <

(left) Semi-modules

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring.

A (left) semi-module over S

Is a structure $(N, \Box, \rhd, \overline{0}_N)$, where

- $(N, \Box, \overline{0}_N)$ is a commutative monoid
- \triangleright is a function $\triangleright \in (S \times N) \rightarrow N$
- $(a \otimes b) \triangleright m = a \triangleright (b \triangleright m)$
- $\overline{0} \vartriangleright m = \overline{0}_N$

•
$$s \triangleright \overline{0}_N = \overline{0}_N$$

• $\overline{1} \triangleright m = m$

and distributivity holds,

LD :
$$s \triangleright (m \Box n) = (s \triangleright m) \Box (s \triangleright n)$$

RD : $(s \oplus t) \triangleright m = (s \triangleright m) \Box (t \triangleright m)$

Example : Hot-Potato

S idempotent and selective $S = (S, \oplus_S, \otimes_S)$ $T = (T, \oplus_T, \otimes_T)$ $\triangleright_{fst} \in S \rightarrow (S \times T) \rightarrow (S \times T)$ $s_1 \triangleright_{fst} (s_2, t) = (s_1 \otimes_S s_2, t)$

$$Hot(\boldsymbol{S}, T) = (\boldsymbol{S} \times T, \vec{\oplus}, \rhd_{fst}),$$

where $\vec{\oplus}$ is the (left) lexicographic product of $\oplus_{\mathcal{S}}$ and $\oplus_{\mathcal{T}}$.

Define \triangleright_{hp} on matrices

$$(\mathsf{L} \rhd_{\mathrm{hp}} \mathsf{M})(i, d) = \overset{\circ}{\oplus}_{q \in V} \mathsf{L}(i, q) \rhd_{\mathrm{fst}} \mathsf{M}(q, d)$$

Example of hot-potato routing

matrix	solves
A *	$L = (A \otimes L) \oplus I$
$\mathbf{A}^* arphi_{hp} \mathbf{M}$	$F = (A arphi_{ ext{hp}} F) ec{ o} M$

< 6 b

Example : Cold-Potato

$$\operatorname{Cold}(S, T) = (S \times T, \overleftarrow{\oplus}, \rhd_{\operatorname{fst}}),$$

where $\vec{\oplus}$ is the (left) lexicographic product of $\oplus_{\mathcal{S}}$ and $\oplus_{\mathcal{T}}$.

Define \triangleright_{cp} on matrices

$$(\mathbf{L} \rhd_{\rm cp} \mathbf{M})(i, d) = \overleftarrow{\oplus}_{q \in V} \mathbf{L}(i, q) \rhd_{\rm fst} \mathbf{M}(q, d)$$

イロト イポト イヨト イヨト 二日

Example of cold-potato routing

matrix	solves
A *	$L = (A \otimes L) \oplus I$
$\mathbf{A}^* hdow_{\mathrm{cp}} \mathbf{M}$	$F = A arphi_{\mathrm{cp}} F \overleftarrow{\ominus} M$

Routing matrix

< 6 k

- B