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An observation concerning 0-stable semirings
Suppose that p1 is a path from i to k , p2 is a path from k to k (a loop),
and p3 is a path from k to j .

Claim
If the graph is weighted over a 0-stable semiring (1⊕ a = a⊕ 1 = 1),
then

w(p1p3) ≤L
⊕ w(p1p2p3).

In other words, for such semirings it does not pay to go around loops
seeking a minimum path weight.

w(p1p3)⊕ w(p1p2p3) = (w(p1)⊗ w(p3))⊕ (w(p1)⊗ w(p2)⊗ w(p3))

= w(p1)⊗ (1⊕ w(p2))⊗ w(p3)

= w(p1)⊗ 1⊗ w(p3)
= w(p1)⊗ w(p3)
= w(p1p3)
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Shortest paths example, (N∞, min, +)

0

1

2

3

4

6

5 42

1

4

3

The adjacency matrix

A =



0 1 2 3 4

0 ∞ 2 1 6 ∞
1 2 ∞ 5 ∞ 4
2 1 5 ∞ 4 3
3 6 ∞ 4 ∞ ∞
4 ∞ 4 3 ∞ ∞



Note that the longest shortest path is (1, 0, 2, 3) of length 3 and
weight 7.
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(min,+) example

Our theorem tells us that A∗ = A(n−1) = A(4)

A∗ = A(4) = I min A min A2 min A3 min A4 =



0 1 2 3 4

0 0 2 1 5 4
1 2 0 3 7 4
2 1 3 0 4 3
3 5 7 4 0 7
4 4 4 3 7 0
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(min,+) example

A =



0 1 2 3 4

0 ∞ 2 1 6 ∞
1 2 ∞ 5 ∞ 4
2 1 5 ∞ 4 3
3 6 ∞ 4 ∞ ∞
4 ∞ 4 3 ∞ ∞



A2 =



0 1 2 3 4

0 2 6 7 5 4
1 6 4 3 8 8
2 7 3 2 7 9
3 5 8 7 8 7
4 4 8 9 7 6



A3 =



0 1 2 3 4

0 8 4 3 8 10
1 4 8 7 7 6
2 3 7 8 6 5
3 8 7 6 11 10
4 10 6 5 10 12



A4 =



0 1 2 3 4

0 4 8 9 7 6
1 8 6 5 10 10
2 9 5 4 9 11
3 7 10 9 10 9
4 6 10 11 9 8


First appearance of final value is in red and underlined. Remember:
we are looking at all paths of a given length, even those with cycles!

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 05—07T.G.Griffin c©2013 5 / 46



A “better” way — our basic algorithm

A〈0〉 = I
A〈k+1〉 = AA〈k〉 ⊕ I

Lemma

A〈k〉 = A(k) = I⊕ A1 ⊕ A2 ⊕ · · · ⊕ Ak
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back to (min,+) example

A〈1〉 =



0 1 2 3 4

0 0 2 1 6 ∞
1 2 0 5 ∞ 4
2 1 5 0 4 3
3 6 ∞ 4 0 ∞
4 ∞ 4 3 ∞ 0



A〈2〉 =



0 1 2 3 4

0 0 2 1 5 4
1 2 0 3 8 4
2 1 3 0 4 3
3 5 8 4 0 7
4 4 4 3 7 0



A〈3〉 =



0 1 2 3 4

0 0 2 1 5 4
1 2 0 3 7 4
2 1 3 0 4 3
3 5 7 4 0 7
4 4 4 3 7 0



tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 05—07T.G.Griffin c©2013 7 / 46



A note on A vs. A⊕ I

Lemma 6.0
If ⊕ is idempotent, then

(A⊕ I)k = A(k).

Proof. Base case: When k = 0 both expressions are I.
Assume (A⊕ I)k = A(k). Then

(A⊕ I)k+1 = (A⊕ I)(A⊕ I)k

= (A⊕ I)A(k)

= AA(k) ⊕ A(k)

= A(I⊕ A⊕ · · · ⊕ Ak )⊕ A(k)

= A⊕ A2 ⊕ · · · ⊕ Ak+1 ⊕ A(k)

= Ak+1 ⊕ A(k)

= A(k+1)
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Solving (some) equations
Theorem 6.1
If A is q-stable, then X = A∗ solves the equations

X = AX⊕ I

and
X = XA⊕ I.

For example,

A∗ = A(q)

= A(q+1)

= Aq+1 ⊕ Aq ⊕ . . .⊕ A2 ⊕ A⊕ I
= A(Aq ⊕ Aq−1 ⊕ . . .⊕ A⊕ I)⊕ I
= AA(q) ⊕ I
= AA∗ ⊕ I

Note that if we replace the assumption “A is q-stable” with “A∗ exists,”
then we require that ⊗ distributes over infinite sums.
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A more general result
Theorem Left-Right
If A is q-stable, then X = A∗B solves the equations

X = AX⊕ B

and X = BA∗ solves
X = XA⊕ B.

For example,

A∗B = A(q)B
= A(q+1)B
= (Aq+1 ⊕ Aq ⊕ . . .⊕ A2 ⊕ A⊕ I)B
= (Aq+1 ⊕ Aq ⊕ . . .⊕ A2 ⊕ A)B⊕ B
= A(Aq ⊕ Aq−1 ⊕ . . .⊕ A⊕ I)B⊕ B
= A(A(q)B)⊕ B
= A(A∗B)⊕ B
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Use Theorem Left-Right to Work this out

Theorem (John Conway, 1971)
If

A =

(
A1,1 A1,2
A2,1 A2,2

)
then A∗ can be written as(

(A1,1 ⊕ A1,2A∗2,2A2,1)
∗ A∗1,1A1,2(A2,2 ⊕ A2,1A∗1,1A1,2)

∗

A∗2,2A2,1(A1,1 ⊕ A1,2A∗2,2A2,1)
∗ (A2,2 ⊕ A2,1A∗1,1A1,2)

∗

)
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The “best” solution

Suppose Y is a matrix such that

Y = AY⊕ I

Y = AY⊕ I
= A1Y⊕ A(0)

= A((AY⊕ I))⊕ I
= A2Y⊕ A⊕ I
= A2Y⊕ A(1)

...
...

...
= Ak+1Y⊕ A(k)

If A is q-stable and q < k , then

Y = AkY⊕ A∗

Y EL
⊕ A∗

and if ⊕ is idempotent, then

Y ≤L
⊕ A∗

So A∗ is the largest solution. What
does this mean in terms of the sp
semiring?
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Example with zero weighted cycles using sp semiring

0

1

2
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00

A =


0 1 2

0 ∞ 10 10
1 ∞ ∞ 0
2 ∞ 0 ∞



A∗ (= A⊕ I in this case) solves

X = XA⊕ I.

But so does this (dishonest) matrix!

F =


0 1 2

0 0 9 9
1 ∞ 0 0
2 ∞ 0 0


For example :

(FA)(0,1)
= min

q∈{0,1,2}
F(0,q) + A(q,1)

= min(0 + 10,9 +∞,9 + 0)
= 9
= F(0,1)
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Recall our basic iterative algorithm

A〈0〉 = I
A〈k+1〉 = AA〈k〉 ⊕ I

A closer look ...

A〈k+1〉(i , j) = I(i , j)⊕
⊕

u

A(i ,u)A〈k〉(u, j)

= I(i , j)⊕
⊕

(i,u)∈E

A(i ,u)A〈k〉(u, j)

This is the basis of distributed Bellman-Ford algorithms — a node i
computes routes to a destination j by applying its link weights to the
routes learned from its immediate neighbors. It then makes these
routes available to its neighbors and the process continues...
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What if we start iteration in an arbitrary state M?

In a distributed environment the topology (captured here by A) can
change and the state of the computation can start in an arbitrary state
(with respect to a new A).

A〈0〉M = M
A〈k+1〉

M = AA〈k〉M ⊕ I

Lemma 6.4
For 1 ≤ k ,

A〈k〉M = AkM⊕ A(k−1)

If A is q-stable and q < k , then

A〈k〉M = AkM⊕ A∗
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RIP-like example — counting to convergence (1)

0

1

2 3

1 11

1 10

Adjacency matrix A1


0 1 2 3

0 ∞ 1 1 ∞
1 1 ∞ 1 1
2 1 1 ∞ 10
3 ∞ 1 10 ∞



0

1

2 3

11

1 10

Adjacency matrix A2


0 1 2 3

0 ∞ 1 1 ∞
1 1 ∞ 1 ∞
2 1 1 ∞ 10
3 ∞ ∞ 10 ∞


See RFC 1058.
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RIP-like example — counting to convergence (2)

0

1

2 3

1 11

1 10

The solution A∗1


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



0

1

2 3

11

1 10

The solution A∗2


0 1 2 3

0 0 1 1 11
1 1 0 1 11
2 1 1 0 10
3 11 11 10 0
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RIP-like example — counting to convergence (3)

The scenario: we arrived at A∗1, but then links {(1,3), (3,1)} fail. So
we start iterating using the new matrix A2.

Let BK represent A2
〈k〉
M , where M = A∗1.
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RIP-like example — counting to convergence (4)

B0 =


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



B1 =


0 1 2 3

0 0 1 1 2
1 1 0 1 3
2 1 1 0 2
3 11 11 10 0



B2 =


0 1 2 3

0 0 1 1 3
1 1 0 1 3
2 1 1 0 3
3 11 11 10 0



B3 =


0 1 2 3

0 0 1 1 4
1 1 0 1 4
2 1 1 0 4
3 11 11 10 0



B4 =


0 1 2 3

0 0 1 1 5
1 1 0 1 5
2 1 1 0 5
3 11 11 10 0



B5 =


0 1 2 3

0 0 1 1 6
1 1 0 1 6
2 1 1 0 6
3 11 11 10 0
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RIP-like example — counting to convergence (5)

B6 =


0 1 2 3

0 0 1 1 7
1 1 0 1 7
2 1 1 0 7
3 2 1 2 0



B7 =


0 1 2 3

0 0 1 1 8
1 1 0 1 8
2 1 1 0 8
3 11 11 10 0



B8 =


0 1 2 3

0 0 1 1 9
1 1 0 1 9
2 1 1 0 9
3 11 11 10 0



B9 =


0 1 2 3

0 0 1 1 10
1 1 0 1 10
2 1 1 0 10
3 11 11 10 0



B10 =


0 1 2 3

0 0 1 1 11
1 1 0 1 11
2 1 1 0 10
3 11 11 10 0
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RIP-like example — counting to infinity (1)

0

1

2 3

1 11

1 10

The solution A∗1


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



0

1

2 3

11

1

The solution A∗3


0 1 2 3

0 0 1 1 ∞
1 1 0 1 ∞
2 1 1 0 ∞
3 ∞ ∞ ∞ 0


Now let BK represent A3

〈k〉
M , where M = A∗1.
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RIP-like example — counting to infinity (2)

B0 =


0 1 2 3

0 0 1 1 2
1 1 0 1 1
2 1 1 0 2
3 2 1 2 0



B1 =


0 1 2 3

0 0 1 1 2
1 1 0 1 3
2 1 1 0 2
3 ∞ ∞ ∞ 0



B2 =


0 1 2 3

0 0 1 1 3
1 1 0 1 3
2 1 1 0 3
3 ∞ ∞ ∞ 0



...
...

...

B376 =


0 1 2 3

0 0 1 1 377
1 1 0 1 377
2 1 1 0 377
3 ∞ ∞ ∞ 0


...

...
...

B998 =


0 1 2 3

0 0 1 1 999
1 1 0 1 999
2 1 1 0 999
3 ∞ ∞ ∞ 0


...

...
...
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RIP-like example — What’s going on?

Recall

A〈k〉M (i , j) = AkM(i , j)⊕ A∗(i , j)

A∗(i, j) may be arrived at very quickly
but AkM(i , j) may be better until a very large value of k is reached
(counting to convergence)
or it may always be better (counting to infinity).

Solutions?
RIP:∞ = 16
We will explore various ways of adding paths to metrics and
eliminating those paths with loops ....
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Goal

G = (V , E)

A semiring S, such that if A is an adjaceny matrix over S with

A(i , j) =
{
{(i , j)} if (i , j) ∈ E
{} otherwise

then

A∗(i , j) = the set of all elementary (no loops) paths from i to j .

We could attempt to directly define such an algebra. But instead we
will build it step-by-step using simple constructions ...
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Lifted Product

Lifted product semigroup
Assume (S,⊗) is a semigroup. Let lift×(S) ≡ (Pfin(S), ⊗̂) where

X ⊗̂Y = {x ⊗ y | x ∈ X , y ∈ Y}

, where X ,Y ∈ Pfin(S), the set of finite subsets of S.

Lifted semiring

If 1 is the identity for ⊗, then

lift(S) = (Pfin(S), ∪, ⊗̂, {}, {1})

is a semiring. Note that {} is an annihilator for ⊗̂.

When does lift(S) have an annihilator for ∪?
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Operation for inserting a zero

add_zero(0, (S, ⊕, ⊗)) = (S ] {0},⊕0, ⊗0)

where

a⊕0 b =


a (if b = inr(0))
b (if a = inr(0))

inl(x ⊕ y) (if a = inl(x), b = inl(y))

a⊗0 b =


inr(0) (if b = inr(0))
inr(0) (if a = inr(0))

inl(x ⊗ y) (if a = inl(x), b = inl(y))

disjoint union

A ] B ≡ {inl(a) | a ∈ A} ∪ {inr(b) | b ∈ B}
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Operation for inserting a one

add_one(1, (S, ⊕, ⊗)) = (S ] {1},⊕1, ⊗1)

where

a⊕1 b =


inr(1) (if b = inr(1))
inr(1) (if a = inr(1))

inl(x ⊕ y) (if a = inl(x), b = inl(y))

a⊗1 b =


a (if b = inr(1))
b (if a = inr(1))

inl(x ⊗ y) (if a = inl(x), b = inl(x))
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Reductions

If (S,⊕,⊗) is a semiring and r is a function from S to S, then r is a
reduction if for all a and b in S

1 r(a) = r(r(a))
2 r(a⊕ b) = r(r(a)⊕ b) = r(a⊕ r(b))
3 r(a⊗ b) = r(r(a)⊗ b) = r(a⊗ r(b))

Note that if either operation has an identity, then the first axioms is not
needed. For example,

r(a) = r(a⊕ 0) = r(r(a)⊕ 0) = r(r(a))
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Reduce operation

If (S, ⊕, ⊗) is semiring and r is a reduction, then let
redr (S) = (Sr , ⊕r , ⊗r ) where

1 Sr = {s ∈ S | r(s) = s}
2 x ⊕r y = r(x ⊕ y)
3 x ⊗r y = r(x ⊗ y)

Is the result always semiring?
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Finally : A semiring of elementary paths

Semigroup of Sequences seq(X )

carrier : finite sequences over elements of X
operation : concatenation
identity : the empty string ε

Let X be a set of sequences over lift(seq(E)), and let

r(X ) = {p ∈ X | p is an elementary path in G}

Semiring of Elementary Paths

sep(G) = redr (lift(seq(E)))

Preview of next problem set: In order to check that sep(G) is indeed a
semiring, we only need understand the functions lift(_) and red_(_).
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sep(G) example

0

1

2

3

4

{(0,3)}

{(3,0)}

{(1,2)}{(2,1)}
{(1,4)}

{(4,1)}

{(0,1)}

{(1,0)}

{(0,2)}

{(2,0)}

{(2,3)}{(3,2)}

{(2,4)}

{(4,2)}
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sep(G) example, adjacency matrix

I =



0 1 2 3 4

0 {ε} {} {} {} {}
1 {} {ε} {} {} {}
2 {} {} {ε} {} {}
3 {} {} {} {ε} {}
4 {} {} {} {} {ε}



A =



0 1 2 3 4

0 {} {[(0,1)]} {[(0,2)]} {[(0,3)]} {}
1 {[(1,0)]} {} {[(1,2)]} {} {[(1,4)]}
2 {[(2,0)]} {[(2,1)]} {} {[(2,3)]} {[(2,4)]}
3 {[(3,0)]} {} {[(3,2)]} {} {}
4 {} {[(4,1)]} {[(4,2)]} {} {}


Here I write a non-empty path p as [p].
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sep(G) example, solution

A∗(0,0) = {ε}

A∗(0,4) =



[(0,1), (1,4)],
[(0,1), (1,2), (2,4)],
[(0,2), (2,4)],
[(0,2), (2,1), (1,4)],
[(0,3), (3,2), (2,4)],
[(0,3), (3,2), (2,1), (1,4)]
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Direct Product of Semigroups

Let (S,⊕S) and (T ,⊕T ) be semigroups.

Definition (Direct product semigroup)
The direct product is denoted (S,⊕S)× (T ,⊕T ) = (S × T ,⊕), where
⊕ = ⊕S ×⊕T is defined as

(s1, t1)⊕ (s2, t2) = (s1 ⊕S s2, t1 ⊕T t2).
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Lexicographic Product of Semigroups

Definition (Lexicographic product semigroup)
Suppose that semigroup (S,⊕S) is commutative, idempotent, and
selective and that (T ,⊕T ) is a semigroup. The lexicographic product is
denoted (S,⊕S) ~× (T ,⊕T ) = (S × T , ~⊕), where ~⊕ = ⊕S ~×⊕T is
defined as

(s1, t1)~⊕(s2, t2) =


(s1 ⊕S s2, t1 ⊕T t2) s1 = s1 ⊕S s2 = s2

(s1 ⊕S s2, t1) s1 = s1 ⊕S s2 6= s2

(s1 ⊕S s2, t2) s1 6= s1 ⊕S s2 = s2
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Lexicographic product of Bi-semigroups

(S, ⊕S, ⊗S) ~× (T , ⊕T , ⊗T ) = (S × T , ⊕S ~×⊕T , ⊗S ×⊗T )

Theorem
If ⊕S is commutative, idempotent, and selective, then

LD(S ~× T ) ⇐⇒ LD(S) ∧ LD(T ) ∧ (LC(S) ∨ LK(T ))

Where
Property Definition
LD ∀a,b, c : c ⊗ (a⊕ b) = (c ⊗ a)⊕ (c ⊗ b)
LC ∀a,b, c : c ⊗ a = c ⊗ b =⇒ a = b
LK ∀a,b, c : c ⊗ a = c ⊗ b
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Prove
LD(S) ∧ LD(T ) ∧ (LC(S) ∨ LK(T )) =⇒ LD(S ~× T )
Assume S and T are bisemigroups, LD(S) ∧ LD(T ) ∧ (LC(S) ∨ LK(T )),
and

(s1, t1), (s2, t2), (s3, t3) ∈ S × T .

Then (dropping operator subscripts for clarity) we have

lhs = (s1, t1)⊗ ((s2, t2)~⊕(s3, t3))
= (s1, t1)⊗ (s2 ⊕ s3, tlhs)
= (s1 ⊗ (s2 ⊕ s3), t1 ⊗ tlhs)

rhs = ((s1, t1)⊗ (s2, t2))~⊕((s1, t1)⊗ (s3, t3))
= (s1 ⊗ s2, t1 ⊗ t2)~⊕(s1 ⊗ s3, t1 ⊗ t3)
= ((s1 ⊗ s2)⊕S (s1 ⊗ s3), trhs)
= (s1 ⊗ (s2 ⊕ s3), trhs)

where tlhs and trhs are determined by the definition of ~⊕.
We need to show that lhs = rhs, that is trhs = t1 ⊗ tlhs.
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Case 1 : LC(S)

Note that we have

(?) ∀a,b, c : a 6= b =⇒ c ⊗ a 6= c ⊗ b

Case 1.1 : s2 = s2 ⊕ s3 = s3. Then tlhs = t2 ⊕ t3 and
t1 ⊗ tlhs = t1 ⊗ (t2 ⊕ t3) = (t1 ⊗ t2)⊕ (t1 ⊗ t3), by LD(S). Also,
s1⊗S s2 = s1⊗S s3 and s1⊗ s2 = s1⊗ (s2⊕ s3) = (s1⊗ s2)⊕ (s1⊗ s3),
again by LD(S). Therefore trhs = (t1 ⊗ t2)⊕ (t1 ⊗ t3) = t1 ⊗ tlhs.

Case 1.2 : s2 = s2 ⊕ s3 6= s3. Then t1 ⊗ tlhs = t1 ⊗ t2 Also
s2 = s2 ⊕ s3 =⇒ s1 ⊗ s2 = s1 ⊗ (s2 ⊕ s3) and by ?
s2 ⊕ s3 6= s3 =⇒ s1 ⊗ (s2 ⊕ s3) 6= s1 ⊗ s3. Thus, by LD(S),
(s1 ⊗ s2)⊕ (s1 ⊗ s3) 6= s1 ⊗ s3 and we get trhs = t1 ⊗ t2 = t1 ⊗ tlhs.

Case 1.3 : s2 6= s2 ⊕S s3 = s3. Similar to case 1.2.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 05—07T.G.Griffin c©2013 38 / 46



Case 2 : LK(T )

Case 2.1 : s2 = s2 ⊕S s3 = s3. Same as Case 1.1.

Case 2.2 : s2 = s2 ⊕S s3 6= s3. Then t1 ⊗ tlhs = t1 ⊗ t2. Now,
(s1 ⊗ s2)⊕S (s1 ⊗ s3) = s1 ⊗ (s2 ⊕ s3) = s1 ⊗ s2. So
trhs = (t1 ⊗ t2)⊕ (t1 ⊗ t3) = t1 ⊗ (t2 ⊕ t3) or trhs = (t1 ⊗ t2). In either
case, trhs is of the form t1 ⊗ t , so by LK(T ) we know that trhs = t1 ⊗ tlhs.

Case 2.3 : s2 6= s2 ⊕S s3 = s3. Similar to case 2.2.

tgg22 (cl.cam.ac.uk) L11: Algebraic Path Problems with applications to Internet Routing Lectures 05—07T.G.Griffin c©2013 39 / 46



Examples

name LD LC LK

min_plus Yes Yes No
max_min Yes No No
sep(G) Yes No No

So we have
LD(min_plus ~×max_min)
LD(min_plus ~× sep(G))

But
¬(LD(max_min ~×min_plus))
¬(LD(sep(G) ~×min_plus))
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Shortest paths with best paths
Let’s use

add_zero(∞, min_plus ~× sep(G))

I =



0 1 2 3 4

0 (0, {ε}) ∞ ∞ ∞ ∞
1 ∞ (0, {ε}) ∞ ∞ ∞
2 ∞ ∞ (0, {ε}) ∞ ∞
3 ∞ ∞ ∞ (0, {ε}) ∞
4 ∞ ∞ ∞ ∞ (0, {ε})



A =



0 1 2 3 4

0 ∞ (2, {[(0,1)]}) (1, {[(0,2)]}) (6, {[(0,3)]}) ∞
1 (2, {[(1,0)]}) ∞ (5, {[(1,2)]}) ∞ (4, {[(1,4)]})
2 (1, {[(2,0)]}) (5, {[(2,1)]}) ∞ (4, {[(2,3)]}) (3, {[(2,4)]})
3 (6, {[(3,0)]}) ∞ (4, {[(3,2)]}) ∞ ∞
4 ∞ (4, {[(4,1)]}) (3, {[(4,2)]}) ∞ ∞
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Solution

A∗ =



0 1 2 3 4

0 (0, {ε}) (2, {[(0,1)]}) (1, {[(0,2)]}) (5, {[(0,2), (2,3)]}) (4, {[(0,2), (2,4)]})
1 (2, {[(1,0)]}) (0, {ε}) (3, {[(1,0), (0,2)]}) (7, {[(1,0), (0,2), (2,3)]}) (4, {[(1,4)]})
2 (1, {[(2,0)]}) (3, {[(2,0), (0,1)]}) (0, {ε}) (4, {[(2,3)]}) (3, {[(2,4)]})
3 (5, {[(3,2), (2,0)]}) (7, {[(3,2), (2,0), (0,1)]}) (4, {[(3,2)]}) (0, {ε}) (7, {[(3,2), (2,4)]})
4 (4, {[(4,2), (2,0)]}) (4, {[(4,1)]}) (3, {[(4,2)]}) (7, {[(4,2), (2,3)]}) (0, {ε})
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Starting in an arbitrary state? No!

Let’s use our friend

add_zero(∞, min_plus ~× sep(G))

Problem:

...
...

...

B998 =


0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (999, {})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) (999, {})
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (999, {})
3 ∞ ∞ ∞ (0, {ε})


...

...
...
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Starting in an arbitrary state?

Solution: use another reduction!

r(∞) = ∞

r(s,W ) =

{
∞ if W = {}

(s,W ) otherwise

Now use this instead

redr (add_zero(∞, min_plus ~× sep(G)))
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Starting in an arbitrary state?

B0 and B1


0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (2, {[(0,1), (1,3)]})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) (1, {[(1,3)]})
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (2, {[(2,1), (1,3)]})
3 (2, {[(3,1), (1,0)]}) (1, {[(3,1)]}) (2, {[(3,1), (1,2)]}) (0, {ε})




0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (2, {[(0,1), (1,3)]})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) ∞
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (2, {[(2,1), (1,3)]})
3 ∞ ∞ ∞ (0, {ε})



rcl
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Starting in an arbitrary state?

B2 and B3


0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) (3, {[(0,2), (2,1), (1,3)]})
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) ∞
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) (3, {[(2,0), (0,1), (1,3)]})
3 ∞ ∞ ∞ (0, {ε})




0 1 2 3

0 (0, {ε}) (1, {[(0,1)]}) (1, {[(0,2)]}) ∞
1 (1, {[(1,0)]}) (0, {ε}) (1, {[(1,2)]}) ∞
2 (1, {[(2,0)]}) (1, {[(2,1)]}) (0, {ε}) ∞
3 ∞ ∞ ∞ (0, {ε})



rcl
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