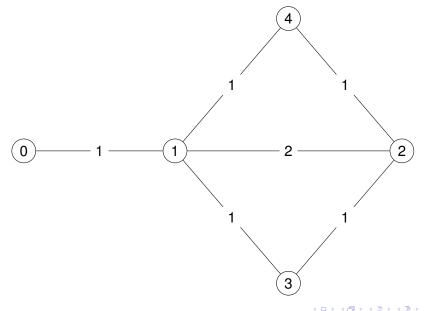
L11: Algebraic Path Problems with applications to Internet Routing Lecture 01

Timothy G. Griffin


timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

Michaelmas Term, 2013

L11: Algebraic Path Problems with applica

< 同 ト < 三 ト < 三 ト

Let's start with shortest paths!

Can represent a problem instance with an adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & \infty & \infty & \infty \\ 1 & 0 & 2 & 1 & 1 \\ 0 & 2 & 0 & 1 & 1 \\ 0 & 1 & 1 & \infty & \infty \\ 0 & 1 & 1 & \infty & \infty \end{bmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

But what problem are we solving?

Classic: globally optimal path weights

We want to find **A*** such that

$$\mathbf{A}^*(i, j) = \min_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where P(i, j) is the set of all paths from *i* to *j*.

In the example:

$$\mathbf{A}^{*} = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 3 & 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 & 2 \\ 4 & 2 & 1 & 1 & 2 & 0 \end{bmatrix}$$

A

An Algorithm: Dijkstra's

Input : adjacency matrix A and source vertex *i* ∈ *V*,
Output : the *i*-th row of R, where R(*i*, *j*) is the shortest distance from *i* to *j* in the graph represented by A.

(1) for each
$$q \in V$$
 do $\mathbf{R}(i, q) \leftarrow \infty$
(2) $S \leftarrow \{\}; \mathbf{R}(i, i) \leftarrow 0$
(3) while $S \neq V$ do
(4) find $q \in V - S$ such that $\mathbf{R}(i, q)$ is minimal
(5) $S \leftarrow S \cup \{q\}$
(6) for each $j \in V - S$ do
(7) $\mathbf{R}(i, j) \leftarrow \mathbf{R}(i, j) \min(\mathbf{R}(i, q) + \mathbf{A}(q, j))$

Run this |V| times to get **R** = **A**^{*}.

< ロ > < 同 > < 回 > < 回 >

But wait! What about the PATHS???

A bit of notation

Assume X and Y are sets of paths over E.

$$X \diamond Y \equiv \{pq \mid p \in X, q \in Y\}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin © 2013 6 / 53

4 3 > 4 3

< 6 k

Dijkstra's Algorithm Augmented With Paths

Input : adjacency matrix **A** and source vertex $i \in V$,

- Output :
 - : the *i*-th row of **R** as before. Now with **P**(*i*, *j*) the set of **all** paths from *i* to *j* of distance **R**(*i*, *j*)

・ 同 ト ・ ヨ ト ・ ヨ ト

Solution(s)

$$\mathbf{R} = \begin{cases} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 3 & 2 & 2 \\ 1 & 0 & 2 & 1 & 1 \\ 3 & 2 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 & 2 \\ 2 & 1 & 1 & 2 & 0 \end{bmatrix}$$

$$\mathbf{P}(0,0) = \{\epsilon\}$$

$$\mathbf{P}(0,1) = \{(0,1)\}$$

$$\mathbf{P}(0,2) = \{(0,1,2), (0,1,3,2), (0,1,4,2)$$

$$\mathbf{P}(2,1) = \{(2,1), (2,3,1), (2,4,1)\}$$

$$\mathbf{P}(2,0) = \{(2,1,0), (2,3,1,0), (2,4,1,0)$$

$$\vdots \vdots \vdots$$

Note : could use just the next hop to implement hop-by-hop forwarding.

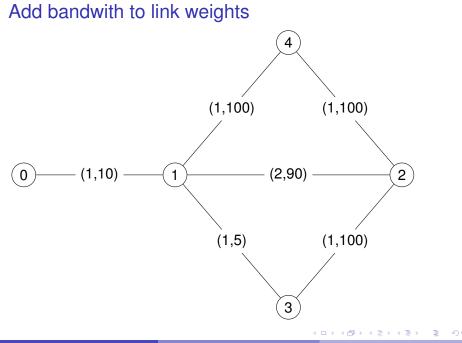
T.G.Griffin © 2013 8 / 53

!)}

)}

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let's enrich the metric to Widest Shortest-Paths

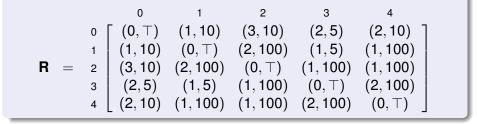

shortest paths	widest shortest paths
$\mathbb{N}\cup\{\infty\}$	$S_{\mathrm{wsp}} \equiv (\mathbb{N} \times \{1, \ \ldots, \ \top\}) \cup \{\infty\}$
min	0
+	•
0	(0, ⊤)

Can replace + by \bullet and min by \circ in both Dijkstra and Bellman-Ford.

$$(a, b) \circ (c, d) = \begin{cases} (a, b \max d) & (a = c) \\ (a, b) & (a < c) \\ (c, d) & (c < a) \end{cases}$$

 $(a, b) \bullet (c, d) = (a+c, b \min d)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >


tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2013 10 / 53

Weights are globally optimal

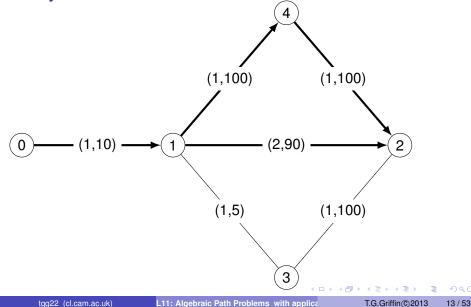
Widest shortest-path weights computed by Dijkstra and Bellman-Ford

Four optimal paths of weight (3, 10). Do our algorithms find all of them?

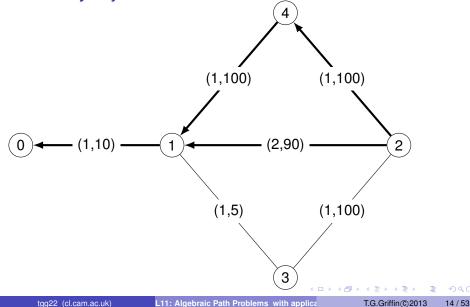
3

Surprise!

Four optimal paths of weight (3, 10)


Paths computed by Dijkstra

Notice that 0's paths cannot both be implemented with next-hop forwarding since $\mathbf{P}_{\text{Dijkstra}}(1,2) = \{(1,4,2)\}.$


Paths computed by **Distributed Bellman-Ford** (Explained in later lectures)

tgg22 (cl.cam.ac.uk)

Optimal paths from 0 to 2. Computed by Dijkstra but not by Bellman-Ford

Optimal paths from 2 to 1. Computed by Bellman-Ford but not by Dijkstra

Observations

For distributed Bellman-Ford $next-hop-paths(\mathbf{A}) = computed-paths(\mathbf{A})$ \subseteq optimal-paths(\mathbf{A})For Dijkstra's algorithm $next-hop-paths(\mathbf{A}) \subseteq computed-paths(\mathbf{A})$ \subset optimal-paths(\mathbf{A})

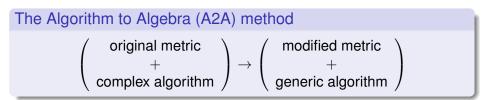
We will see that all of these path sets coincide exactly when the metric is *cancellative*. That is, when $a \otimes b = a \otimes c$ always implies that b = c.

3

What is going on here???

Help!

- Are the algorithms broken?
- Is the new metric broken?


L11

This course will provide you with the tools to answert these questions!

see also

On the Forwarding Paths Produced by Internet Routing Algorithms. Seweryn Dynerowicz and Timothy G. Griffin. To be presented at ICNP 2013 on 10 October, 2013.

3

A2A attempts to shift complexity from an algorithm to the metric, which is captured in an algebraic structure such as a semiring.

The Tentative Plan

18 October

25 October

30 October

6 November

8 November

13 November

15 November

20 November

23 November

27 November

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

- 1 11 October : The Paths Puzzle
 - 16 October : Semigroups and Order Relations
 - : Semirings Theory
 - 23 October : Semirings Constructions
 - : Semirings Examples
 - : Semirings algorithms
 - 1 November : Beyond Semirings "functions on arcs"
 - : Beyond Semirings Global vs Local optimality
 - : Solving the Paths Puzzle (HW 1 due)
 - : Graph (Network) decomposition
 - : Protocols : RIP, OSPF, IS-IS
 - : More on Global vs Local optimality
 - : Protocols : EIGRP, BGP
 - : Dijkstra revisited
 - 29 November : Route redistribution, administrative distance
 - 4 December : Metarouting project (HW 2 due)

15 January : HW 3 due

T.G.Griffin © 2013 18 / 53

Semigroups

Definition (Semigroup)

A semigroup (S, \oplus) is a non-empty set S with a binary operation such that

ASSOCIATIVE : $a \oplus (b \oplus c) = (a \oplus b) \oplus c$

S	\oplus	where
\mathbb{N}^{∞}	min	
\mathbb{N}^{∞}	max	
\mathbb{N}^{∞}	+	
2 ^{<i>W</i>}	U	
2 ^{<i>W</i>}	\cap	
S^*	0	$(abc \circ de = abcde)$
S	left	(a left b = a)
S	right	(a right b = b)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Special Elements

Definition

 α ∈ S is an identity if for all a ∈ S

 $a = \alpha \oplus a = a \oplus \alpha$

- A semigroup is a monoid if it has an identity.
- ω is an annihilator if for all $a \in S$

 $\omega = \omega \oplus \mathbf{a} = \mathbf{a} \oplus \omega$

S	\oplus	α	ω
\mathbb{N}^{∞}	min	∞	0
\mathbb{N}^{∞}	max	0	∞
\mathbb{N}^{∞}	+	0	∞
2 ^{<i>W</i>}	U	{}	W
2 ^{<i>W</i>}	\cap	Ŵ	{}
S^*	0	ϵ	
S	left		
S	right		

- **A**

4 3 5 4 3

Important Properties

Definition (Some Important Semigroup Properties)

COMMUTATIVE	:	a ⊕ b	=	$\pmb{b} \oplus \pmb{a}$
SELECTIVE	:	$\pmb{a} \oplus \pmb{b}$	\in	{ a , b }
IDEMPOTENT	:	<i>a</i> ⊕ <i>a</i>	=	а

S	\oplus	COMMUTATIVE	SELECTIVE	IDEMPOTENT
\mathbb{N}^{∞}	min	*	*	*
\mathbb{N}^{∞}	max	*	*	*
\mathbb{N}^{∞}	+	*		
2 ^W	U	*		*
2 ^W S*	\cap	*		*
<i>S</i> *	0			
S	left		*	*
S	right		*	*

э

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・

Order Relations

We are interested in order relations $\leq \subseteq S \times S$

Definition (Important Order Properties)

- REFLEXIVE : $a \le a$
- TRANSITIVE : $a \leq b \land b \leq c \rightarrow a \leq c$
- ANTISYMMETRIC : $a \leq b \land b \leq a \rightarrow a = b$

TOTAL : $a \le b \lor b \le a$

	pre-order	partial order	preference order	total order
REFLEXIVE	*	*	*	*
TRANSITIVE	*	*	*	*
ANTISYMMETRIC		*		*
TOTAL			*	*

Canonical Pre-order of a Commutative Semigroup

Suppose \oplus is commutative.

Definition (Canonical pre-orders)

$$a \trianglelefteq_{\oplus}^{R} b \equiv \exists c \in S : b = a \oplus c$$

 $a \trianglelefteq_{\oplus}^{L} b \equiv \exists c \in S : a = b \oplus c$

Lemma (Sanity check)

Associativity of \oplus implies that these relations are transitive.

Proof.

Note that $a \trianglelefteq_{\oplus}^{R} b$ means $\exists c_{1} \in S : b = a \oplus c_{1}$, and $b \trianglelefteq_{\oplus}^{R} c$ means $\exists c_{2} \in S : c = b \oplus c_{2}$. Letting $c_{3} = c_{1} \oplus c_{2}$ we have $c = b \oplus c_{2} = (a \oplus c_{1}) \oplus c_{2} = a \oplus (c_{1} \oplus c_{2}) = a \oplus c_{3}$. That is, $\exists c_{3} \in S : c = a \oplus c_{3}$, so $a \trianglelefteq_{\oplus}^{R} c$. The proof for $\trianglelefteq_{\oplus}^{L}$ is similar.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Canonically Ordered Semigroup

Definition (Canonically Ordered Semigroup)

A commutative semigroup (S, \oplus) is canonically ordered when $a \trianglelefteq_{\oplus}^{R} c$ and $a \trianglelefteq_{\oplus}^{L} c$ are partial orders.

Definition (Groups)

A monoid is a group if for every $a \in S$ there exists a $a^{-1} \in S$ such that $a \oplus a^{-1} = a^{-1} \oplus a = \alpha$.

く 戸 と く ヨ と く ヨ と

Canonically Ordered Semigroups vs. Groups

Lemma (THE BIG DIVIDE)

Only a trivial group is canonically ordered.

Proof.

If $a, b \in S$, then $a = \alpha_{\oplus} \oplus a = (b \oplus b^{-1}) \oplus a = b \oplus (b^{-1} \oplus a) = b \oplus c$, for $c = b^{-1} \oplus a$, so $a \leq_{\oplus}^{L} b$. In a similar way, $b \leq_{\oplus}^{R} a$. Therefore a = b.

A (10) A (10)

Natural Orders

Definition (Natural orders)

Let (S, \oplus) be a semigroup.

$$a \leq_{\oplus}^{L} b \equiv a = a \oplus b$$

 $a \leq_{\oplus}^{R} b \equiv b = a \oplus b$

Lemma

If \oplus is commutative and idempotent, then $a \leq_{\oplus}^{D} b \iff a \leq_{\oplus}^{D} b$, for $D \in \{R, L\}$.

Proof.

$$a \leq_{\oplus}^{R} b \iff b = a \oplus c = (a \oplus a) \oplus c = a \oplus (a \oplus c)$$

$$= a \oplus b \iff a \leq_{\oplus}^{R} b$$

$$a \leq_{\oplus}^{L} b \iff a = b \oplus c = (b \oplus b) \oplus c = b \oplus (b \oplus c)$$

$$= b \oplus a = a \oplus b \iff a \leq_{\oplus}^{L} b$$

Special elements and natural orders

Lemma (Natural Bounds)

- If α exists, then for all $a, a \leq_{\oplus}^{L} \alpha$ and $\alpha \leq_{\oplus}^{R} a$
- If ω exists, then for all $a, \omega \leq_{\oplus}^{L} a$ and $a \leq_{\oplus}^{R} \omega$
- If α and ω exist, then S is bounded.

$$\begin{array}{rcl} \omega & \leq^{\mathsf{L}}_{\oplus} & \mathsf{a} & \leq^{\mathsf{L}}_{\oplus} & \alpha \\ \alpha & \leq^{\mathsf{R}}_{\oplus} & \mathsf{a} & \leq^{\mathsf{R}}_{\oplus} & \omega \end{array}$$

Remark (Thanks to Iljitsch van Beijnum)

Note that this means for $(\min, +)$ we have

$$egin{array}{rcl} 0 & \leq^L_{\min} & a & \leq^L_{\min} & \infty \ \infty & \leq^R_{\min} & a & \leq^R_{\min} & 0 \end{array}$$

and still say that this is bounded, even though one might argue with the terminology!

Examples of special elements

S	\oplus	α	ω	$\leq^{\mathrm{L}}_{\oplus}$	\leq^{R}_{\oplus}
$\mathbb{N}\cup\{\infty\}$	min	∞	0	\leq	\geq
$\mathbb{N} \cup \{\infty\}$	max	0	∞	\geq	\leq
$\mathcal{P}(W)$	U	{}	W	\subseteq	⊇
$\mathcal{P}(W)$	\cap	W	{}	⊇	\subseteq

T.G.Griffin © 2013 28 / 53

2

Property Management

Lemma

Let $D \in \{R, L\}$.

● IDEMPOTENT $((S, \oplus)) \iff$ REFLEXIVE $((S, \leq_{\oplus}^{D}))$

② COMMUTATIVE $((S, \oplus)) \implies$ ANTISYMMETRIC $((S, ≤_{\oplus}^{D}))$

 $\begin{array}{l} \textcircled{\begin{subarray}{l} \hline 0 COMMUTATIVE}((S, \oplus)) \implies ({\tt SELECTIVE}((S, \oplus)) \iff {\tt TOTAL}((S, $\leq^{D}_{\oplus}))) \end{array} } \end{array}$

Proof.

$$a \leq_{\oplus}^{D} a \iff a = a \oplus a,$$

$$a \leq_{\oplus}^{L} b \land b \leq_{\oplus}^{L} a \iff a = a \oplus b \land b = b \oplus a \implies a = b$$

$$a = a \oplus b \lor b = a \oplus b \iff a \leq_{\oplus}^{L} b \lor b \leq_{\oplus}^{L} a$$

A (10) A (10)

Bounds

Suppose (S, \leq) is a partially ordered set.

greatest lower bound

For $a, b \in S$, the element $c \in S$ is the greatest lower bound of a and b, written c = a glb b, if it is a lower bound ($c \le a$ and $c \le b$), and for every $d \in S$ with $d \le a$ and $d \le b$, we have $d \le c$.

least upper bound

For $a, b \in S$, the element $c \in S$ is the *least upper bound of a and b*, written c = a lub b, if it is an upper bound ($a \le c$ and $b \le c$), and for every $d \in S$ with $a \le d$ and $b \le d$, we have $c \le d$.

Semi-lattices

Suppose (S, \leq) is a partially ordered set.

meet-semilattice

S is a *meet-semilattice* if a glb b exists for each $a, b \in S$.

join-semilattice

S is a *join-semilattice* if a lub b exists for each $a, b \in S$.

A (10) A (10)

Fun Facts

Fact 1

Suppose (S, \oplus) is a commutative and idempotent semigroup.

- (S, \leq_{\oplus}^{L}) is a meet-semilattice with a glb $b = a \oplus b$.
- (S, \leq_{\oplus}^{R}) is a join-semilattice with *a* lub $b = a \oplus b$.

Fact 2

Suppose (S, \leq) is a partially ordered set.

- If (S, ≤) is a meet-semilattice, then (S, glb) is a commutative and idempotent semigroup.
- If (S, ≤) is a join-semilattice, then (S, lub) is a commutative and idempotent semigroup.

That is, semi-lattices represent the same class of structures as commutative and idempotent semigroups.

Bi-semigroups and Pre-Semirings

$(\mathcal{S}, \oplus, \otimes)$ is a bi-semigroup when

- (S, \oplus) is a semigroup
- (S, \otimes) is a semigroup

(S, \oplus, \otimes) is a pre-semiring when

- ($\mathcal{S}, \oplus, \otimes$) is a bi-semigroup
- ⊕ is commutative

and left- and right-distributivity hold,

LD :
$$a \otimes (b \oplus c) = (a \otimes b) \oplus (a \otimes c)$$

RD : $(a \oplus b) \otimes c = (a \otimes c) \oplus (b \otimes c)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Semirings

$(S, \oplus, \otimes, \overline{0}, \overline{1})$ is a semiring when

- ($\mathcal{S}, \oplus, \otimes$) is a pre-semiring
- $(S, \oplus, \overline{0})$ is a (commutative) monoid
- $(S, \otimes, \overline{1})$ is a monoid
- $\overline{0}$ is an annihilator for \otimes

4 3 5 4 3 5

Examples

Pre-ser	niring	js			
name	. 3	6 ⊕,	\otimes	$\overline{0}$	1
min_pl	us ľ	∛ min	+		0
max_m	in F	a max	min	0	
Comirin					
Semirin	iys				
name	s S	⊕,	\otimes	ō	1
		⊕, min	⊗ +	$\overline{0}$	1 0

Note the sloppiness — the symbols +, max, and min in the two tables represent different functions....

< ロ > < 同 > < 回 > < 回 >

How about (max, +)?

Pre-semir	ing				
name	S	\oplus ,	\otimes	0	1
max_plus	\mathbb{N}	max	+	0	0

• What about " $\overline{0}$ is an annihilator for \otimes "? No!

Semiring (mat	$x_plus^{-\infty} =$	add_ze	ero(-	$-\infty$, n	nax_	_min))		
name	S	\oplus ,	\otimes	ō	1			
max_plus ^{$-\infty$}	$\mathbb{N}\cup\{-\infty\}$	max	+	$-\infty$	0			

Matrix Semirings

• (S, \oplus , \otimes , $\overline{0}$, $\overline{1}$) a semiring

• Define the semiring of $n \times n$ -matrices over $S : (\mathbb{M}_n(S), \oplus, \otimes, \mathbf{J}, \mathbf{I})$

 \oplus and \otimes

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j)$$

 $(\mathbf{A} \otimes \mathbf{B})(i, j) = \bigoplus \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)$

 $1 \le q \le n$

J and I

$$\mathbf{J}(i, j) = \overline{\mathbf{0}}$$
$$\mathbf{I}(i, j) = \begin{cases} \overline{\mathbf{1}} & (\text{if } i = j) \\ \overline{\mathbf{0}} & (\text{otherwise}) \end{cases}$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

$\mathbb{M}_n(S)$ is a semiring!

For example, here is left distribution

$$\mathbf{A}\otimes(\mathbf{B}\oplus\mathbf{C})=(\mathbf{A}\otimes\mathbf{B})\oplus(\mathbf{A}\otimes\mathbf{C})$$

$$\begin{array}{l} (\mathbf{A} \otimes (\mathbf{B} \oplus \mathbf{C}))(i, j) \\ = & \bigoplus_{1 \le q \le n} \mathbf{A}(i, q) \otimes (\mathbf{B} \oplus \mathbf{C})(q, j) \\ = & \bigoplus_{1 \le q \le n} \mathbf{A}(i, q) \otimes (\mathbf{B}(q, j) \oplus \mathbf{C}(q, j)) \\ = & \bigoplus_{1 \le q \le n} (\mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) \\ = & (\bigoplus_{1 \le q \le n} \mathbf{A}(i, q) \otimes \mathbf{B}(q, j)) \oplus (\bigoplus_{1 \le q \le n} \mathbf{A}(i, q) \otimes \mathbf{C}(q, j)) \end{array}$$

$$= ((\mathbf{\bar{A}} \otimes \mathbf{B}) \oplus (\mathbf{A} \otimes \mathbf{C}))(i, j)$$

Note : we only needed left-distributivity on S.

Matrix encoding path problems

- $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring
- G = (V, E) a directed graph
- $w \in E \rightarrow S$ a weight function

Path weight

The *weight* of a path $p = i_1, i_2, i_3, \cdots, i_k$ is

$$w(p) = w(i_1, i_2) \otimes w(i_2, i_3) \otimes \cdots \otimes w(i_{k-1}, i_k).$$

The empty path is given the weight $\overline{1}$.

Adjacency matrix A

$$\mathbf{A}(i, j) = \begin{cases} w(i, j) & \text{if } (i, j) \in E, \\ \\ \overline{0} & \text{otherwise} \end{cases}$$

L11: Algebraic Path Problems with applica

The general problem of finding globally optimal paths

Given an adjacency matrix **A**, find **R** such that for all $i, j \in V$

$$\mathbf{R}(i, j) = \bigoplus_{p \in P(i, j)} w(p)$$

How can we solve this problem?

4 3 5 4 3

< 6 k

Matrix methods

Matrix powers, \mathbf{A}^k $\mathbf{A}^0 = \mathbf{I}$ $\mathbf{A}^{k+1} = \mathbf{A} \otimes \mathbf{A}^k$

Closure, \mathbf{A}^* $\mathbf{A}^{(k)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k$

$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$
$$\mathbf{A}^* = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^k \oplus \cdots$$

Note: A* might not exist. Why?

Matrix methods can compute optimal path weights

- Let P(i,j) be the set of paths from *i* to *j*.
- Let $P^k(i, j)$ be the set of paths from *i* to *j* with exactly *k* arcs.
- Let $P^{(k)}(i,j)$ be the set of paths from *i* to *j* with at most *k* arcs.

Theorem
(1)
$$\mathbf{A}^{k}(i, j) = \bigoplus_{\substack{p \in P^{k}(i, j) \\ p \in P^{(k)}(i, j)}} w(p)$$

(2) $\mathbf{A}^{(k)}(i, j) = \bigoplus_{\substack{p \in P^{(k)}(i, j) \\ p \in P(i, j)}} w(p)$

Warning again: for some semirings the expression $\mathbf{A}^*(i, j)$ might not be well-defeind. Why?

4 **A** N A **B** N A **B** N

Proof of (1)

By induction on *k*. Base Case: k = 0.

$$P^0(i, i) = \{\epsilon\},$$

so $\mathbf{A}^0(i, i) = \mathbf{I}(i, i) = \overline{1} = w(\epsilon).$

And $i \neq j$ implies $P^0(i,j) = \{\}$. By convention

$$\bigoplus_{p\in\{\}} w(p) = \overline{0} = \mathbf{I}(i, j).$$

tgg22 (cl.cam.ac.uk)

L11: Algebraic Path Problems with applica

T.G.Griffin@2013 43 / 53

Proof of (1)

Induction step.

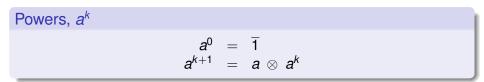
$$\mathbf{A}^{k+1}(i,j) = (\mathbf{A} \otimes \mathbf{A}^k)(i, j)$$

$$= \bigoplus_{\substack{1 \le q \le n}} \mathbf{A}(i, q) \otimes \mathbf{A}^k(q, j)$$

$$= \bigoplus_{\substack{1 \le q \le n}} \mathbf{A}(i, q) \otimes (\bigoplus_{\substack{p \in P^k(q, j)}} w(p))$$

$$= \bigoplus_{\substack{1 \le q \le n}} \bigoplus_{\substack{p \in P^k(q, j)}} \mathbf{A}(i, q) \otimes w(p)$$

$$= \bigoplus_{\substack{(i, q) \in E}} \bigoplus_{p \in P^k(q, j)} w(i, q) \otimes w(p)$$


$$= \bigoplus_{\substack{p \in P^{k+1}(i, j)}} w(p)$$

2

イロト イヨト イヨト イヨト

When does $A^{(*)}$ exist? Try a general approach.

• $(S, \oplus, \otimes, \overline{0}, \overline{1})$ a semiring

Closure, *a**

$$\begin{array}{rcl} a^{(k)} &=& a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \\ a^* &=& a^0 \oplus a^1 \oplus a^2 \oplus \cdots \oplus a^k \oplus \cdots \end{array}$$

Definition (q stability)

If there exists a *q* such that $a^{(q)} = a^{(q+1)}$, then *a* is *q*-stable. Therefore, $a^* = a^{(q)}$, assuming \oplus is idempotent.

T.G.Griffin © 2013 45 / 53

イロト 不得 トイヨト イヨト 二日

More Fun Facts

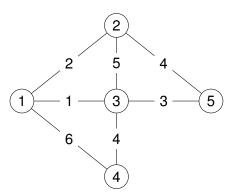
Fact 3

If $\overline{1}$ is an annihiltor for \oplus , then every $a \in S$ is 0-stable!

Fact 4

If S is 0-stable, then $\mathbb{M}_n(S)$ is (n-1)-stable. That is,

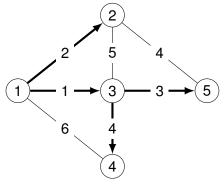
$$\mathbf{A}^* = \mathbf{A}^{(n-1)} = \mathbf{I} \oplus \mathbf{A}^1 \oplus \mathbf{A}^2 \oplus \cdots \oplus \mathbf{A}^{n-1}$$


Homework number 1

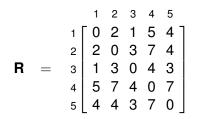
- Prove Fun Facts 1, 2, 3, 4.
- Define a *non-commutative* semigroup (S, ⊕) where ≤^L_⊕ is anti-symmetric.

3

< 日 > < 同 > < 回 > < 回 > < 回 > <


Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

The adjacency matrix


А

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$

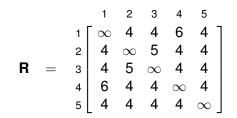
Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \min_{\boldsymbol{p} \in P(i, j)} w(\boldsymbol{p}),$$

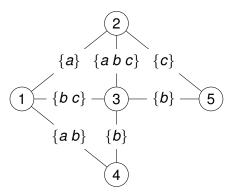
where P(i, j) is the set of all paths from *i* to *j*.


A D b 4 A b

Widest paths example, (\mathbb{N}^{∞} , max, min)

Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix


Matrix **R** solves this global optimality problem:

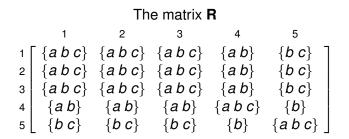
$$\mathbf{R}(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

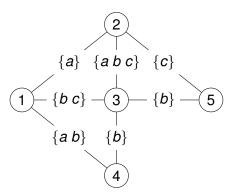
4 A N

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap)$

We want a Matrix **R** to solve this global optimality problem:


$$\mathbf{R}(i, j) = \bigcup_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

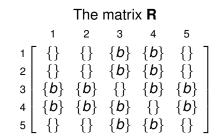
where w(p) is now the intersection of all edge weights in p.


For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that there is at least one path from *i* to *j* with *x* in every arc weight along the path.

12 N 4 12

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap)$

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$


We want matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcap_{\boldsymbol{p} \in \boldsymbol{P}(i, j)} \boldsymbol{w}(\boldsymbol{p}),$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that every path from *i* to *j* has at least one arc with weight containing *x*.

Another unfamiliar example, ($2^{\{a, b, c\}}, \cap, \cup$)

< 6 b