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Communi=es	
  

•  Weak	
  =es	
  (Lecture	
  2)	
  seemed	
  to	
  bridge	
  groups	
  
of	
  =ghtly	
  coupled	
  nodes	
  (communi=es)	
  

•  How	
  do	
  we	
  find	
  these	
  communi=es?	
  
	
  



In	
  This	
  Lecture	
  

•  We	
  will	
  describe	
  a	
  Community	
  Detec=on	
  
method	
  based	
  on	
  betweenness	
  centrality.	
  

•  	
  We	
  will	
  describe	
  the	
  concept	
  of	
  Modularity	
  
and	
  Modularity	
  Op=miza=on.	
  

•  We	
  will	
  describe	
  methods	
  for	
  overlapping	
  
community	
  detec=on.	
  



What	
  is	
  a	
  Community?	
  

� How to automatically find� How�to�automatically�find�
such�densely�connected�
groups of nodes?groups�of�nodes?

� Ideally�such�automatically�
detected�clusters�would�
then�correspond�to�real�
groups

� For example: Communities,�clusters,�� For�example:
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groups,�modules
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Why	
  do	
  we	
  want	
  to	
  find	
  	
  
par==ons/communi=es?	
  

•  Clustering	
  web	
  clients	
  with	
  similar	
  interest	
  or	
  
geographically	
  near	
  can	
  improve	
  performance	
  

•  Customers	
  with	
  similar	
  interests	
  could	
  be	
  
clustered	
  to	
  help	
  recommenda=on	
  systems	
  

•  Clusters	
  in	
  large	
  graphs	
  can	
  be	
  used	
  to	
  create	
  
data	
  structures	
  for	
  efficient	
  storage	
  of	
  graph	
  
data	
  to	
  handle	
  queries	
  or	
  path	
  searches	
  

•  Study	
  the	
  rela=onship/media=on	
  among	
  
nodes	
  
– Hierarchical	
  organiza=on	
  study	
  



Example	
  	
  
Zachary’s	
  Karate	
  club:	
  34	
  members	
  of	
  a	
  club	
  	
  	
  
over	
  3	
  years.	
  Edges:	
  interac=on	
  outside	
  the	
  club	
  

WWW:	
  pages	
  and	
  hyperlinks	
  
Iden=fica=on	
  of	
  clusters	
  can	
  improve	
  	
  
page	
  ranking	
  



Remove	
  weak	
  =es	
  

•  Local	
  bridges	
  connect	
  weakly	
  interac=ng	
  parts	
  
of	
  the	
  network.	
  

•  What	
  if	
  we	
  have	
  many	
  bridges:	
  which	
  do	
  we	
  
remove	
  first?	
  Or	
  there	
  might	
  be	
  no	
  bridges.	
  

•  Note:	
  Without	
  those	
  bridges	
  paths	
  between	
  
nodes	
  would	
  be	
  longer.	
  



Edge	
  Betweenness 	
  	
  

•  Edge	
  Betweenness:	
  the	
  number	
  of	
  shortest	
  
paths	
  between	
  pairs	
  of	
  nodes	
  that	
  run	
  along	
  
the	
  edge.	
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  *	
  7	
  



Algorithm	
  of	
  Girvan-­‐Newmann	
  	
  
(PNAS	
  2002)	
  

•  Calculate	
  the	
  betweenness	
  of	
  all	
  edges	
  
•  Cut	
  the	
  edge	
  with	
  highest	
  betweenness	
  
•  Recalculate	
  edge	
  betweenness	
  



How	
  is	
  the	
  betweenness	
  	
  
computed?	
  

•  Calculate	
  the	
  shortest	
  paths	
  from	
  node	
  A	
  
– BFS	
  search	
  from	
  A.	
  
– Determine	
  number	
  of	
  shortest	
  paths	
  from	
  A	
  to	
  
each	
  node.	
  



Calcula=ng	
  number	
  of	
  	
  
shortest	
  paths	
  



Calcula=ng	
  flows	
  

When	
  we	
  get	
  to	
  a	
  node	
  X	
  
in	
  the	
  breadth-­‐first	
  search	
  
structure,	
  working	
  up	
  
from	
  the	
  bocom,	
  we	
  add	
  
up	
  all	
  the	
  flows	
  arriving	
  
from	
  edges	
  directly	
  below	
  
X,	
  plus	
  1	
  for	
  the	
  flow	
  
des=ned	
  for	
  X	
  itself.	
  We	
  
then	
  divide	
  this	
  up	
  over	
  
the	
  edges	
  leading	
  upward	
  
from	
  X,	
  in	
  propor=on	
  to	
  
the	
  number	
  of	
  shortest	
  
paths	
  coming	
  through	
  
each.	
  
	
  



Calcula=ng	
  Edge	
  Betweenness 	
  	
  

•  Build	
  one	
  of	
  these	
  graphs	
  for	
  each	
  node	
  in	
  the	
  
graph	
  

•  Sum	
  the	
  values	
  on	
  the	
  edges	
  on	
  each	
  graph	
  to	
  
obtain	
  the	
  edge	
  betweenness	
  



Edge:	
  dele=on	
  
When	
  do	
  we	
  stop?	
  

•  How	
  do	
  we	
  know	
  when	
  to	
  stop?	
  

•  When	
  X	
  communi=es	
  have	
  been	
  detected?	
  
•  When	
  the	
  level	
  of	
  cohesion	
  inside	
  a	
  
community	
  has	
  reached	
  Y?	
  

•  There	
  is	
  no	
  prescrip=ve	
  way	
  for	
  every	
  case	
  
•  There	
  are	
  also	
  many	
  other	
  ways	
  of	
  detec=ng	
  
communi=es.	
  



Modularity	
  

•  Perhaps	
  a	
  good	
  measure	
  of	
  when	
  to	
  stop	
  is	
  
when	
  for	
  each	
  community	
  the	
  “cohesion”	
  
within	
  the	
  community	
  is	
  higher	
  than	
  outside…	
  

•  Q=	
  (edges	
  inside	
  the	
  community)-­‐	
  (expected	
  	
  
number	
  of	
  edges	
  inside	
  the	
  community	
  for	
  a	
  
random	
  graph	
  with	
  same	
  node	
  degree	
  
distribu;on	
  as	
  the	
  given	
  network)	
  



Modularity	
  on	
  a	
  	
  
randomized	
  graph	
  calcula=on	
  

a	
   Ka	
  

kakb
2m

m	
  is	
  the	
  number	
  of	
  edges	
  
of	
  the	
  graph	
  =	
  ½	
  sum(ki)	
  

The	
  expected	
  number	
  of	
  
edges	
  in	
  the	
  randomized	
  
version	
  of	
  the	
  graph	
  
where	
  nodes	
  are	
  
rewired:	
  



Modularity	
  (2)	
  

•  Number	
  of	
  edges	
  inside	
  a	
  community:	
  

•  Where:	
  
•  Aa,b	
  is	
  1	
  if	
  there	
  is	
  an	
  edge	
  a-­‐>b,	
  	
  
•  δ(ca	
  ,	
  cb)	
  is	
  the	
  Kronecker	
  Delta	
  (1	
  if	
  ca	
  is	
  equal	
  
to	
  cb)	
  

1
2

Aa,b
a,b
∑ δ(ca,cb )



Modularity	
  (3)	
  

Q1= 1
2

Aa,b
a,b
∑ δ(ca,cb )−

1
2

kakb
2ma,b

∑ δ(ca,cb )

Q1= 1
2

(
a,b
∑ Aa,b −

kakb
2m

)δ(ca,cb )

Q =
1
2m

(
a,b
∑ Aa,b −

kakb
2m

)δ(ca,cb ) Frac=on	
  of	
  edges	
  over	
  
all	
  edges	
  m	
  



Modularity	
  (4)	
  

•  Modularity	
  ranges	
  from	
  -­‐1	
  to	
  1.	
  
–  It	
  is	
  posi=ve	
  if	
  the	
  number	
  of	
  edges	
  inside	
  the	
  group	
  are	
  
more	
  than	
  the	
  expected	
  number.	
  

–  Varia=on	
  from	
  0	
  indicate	
  difference	
  with	
  random	
  case.	
  

•  Modularity	
  can	
  be	
  used	
  at	
  each	
  round	
  of	
  the	
  Girvan-­‐
Newmann	
  algorithm	
  to	
  check	
  if	
  it	
  is	
  =me	
  to	
  stop.	
  
However	
  the	
  complexity	
  of	
  this	
  is	
  O(m2n).	
  	
  

•  Why	
  don’t	
  we	
  try	
  to	
  just	
  maximize	
  modularity?	
  



Modularity	
  Op=miza=on	
  

•  Finding	
  the	
  configura=on	
  with	
  maximum	
  
modularity	
  in	
  a	
  graph	
  is	
  an	
  NP	
  complete	
  
problem.	
  

•  However	
  there	
  are	
  good	
  approxima=on	
  
algorithms.	
  



Fast	
  Modularity	
  

•  Start	
  with	
  a	
  network	
  of	
  n	
  communi=es	
  of	
  1	
  node	
  
•  Calculate	
  ΔQ	
  for	
  all	
  possible	
  community	
  pairs	
  
•  Merge	
  the	
  pair	
  of	
  the	
  largest	
  increase	
  in	
  Q	
  
•  Repeat	
  (2)&(3)	
  un=l	
  one	
  community	
  remains	
  
•  Cross	
  cut	
  the	
  dendrogram	
  where	
  Q	
  is	
  maximum.	
  
•  This	
  runs	
  in	
  O((m	
  +	
  n)n).	
  

•  A	
  further	
  op=miza=on	
  runs	
  in	
  O(m	
  d	
  logn)	
  [d	
  
depth	
  of	
  dendrogram].	
  

•  Most	
  networks	
  are	
  sparse	
  so	
  m~n	
  and	
  d~log	
  n	
  



Example	
  of	
  Dendrogram	
  
3
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FIG. 2: Dendrogram of the communities found by our algo-
rithm in the “karate club” network of Zachary [5, 17]. The
shapes of the vertices represent the two groups into which the
club split as the result of an internal dispute.

not to continue using it—it appears to give the best
results. For systems too large to make use of this ap-
proach, however, our new algorithm gives useful com-
munity structure information with comparatively little
effort.

We have applied our algorithm to a variety of real-
world networks also. We have looked, for example, at
the “karate club” network studied in [5], which represents
friendships between 34 members of a club at a US univer-
sity, as recorded over a two-year period by Zachary [17].
During the course of the study, the club split into two
groups as a result of a dispute within the organization,
and the members of one group left to start their own
club. In Fig. 2 we show the dendrogram derived by feed-
ing the friendship network into our algorithm. The peak
modularity is Q = 0.381 and corresponds to a split into
two groups of 17, as shown in the figure. The shapes of
the vertices represent the alignments of the club mem-
bers following the split and, as we can see, the division
found by the algorithm corresponds almost perfectly to
these alignments; only one vertex, number 10, is classified
wrongly. The GN algorithm performs similarly on this
task, but not better—it also finds the split but classifies
one vertex wrongly (although a different one, vertex 3).
In other tests, we find that our algorithm also success-
fully detects the main two-way division of the dolphin
social network of Lusseau [6, 18], and the division be-
tween black and white musicians in the jazz network of
Gleiser and Danon [11].

As a demonstration of how our algorithm can some-
times miss some of the structure in a network, we take
another example from Ref. 5, a network representing
the schedule of games between American college foot-
ball teams in a single season. Because the teams are di-
vided into groups or “conferences,” with intra-conference
games being more frequent than inter-conference games,
we have a reasonable idea ahead of time about what com-
munities our algorithm should find. The dendrogram
generated by the algorithm is shown in Fig. 3, and has
an optimal modularity of Q = 0.546, which is a little shy

of the value 0.601 for the best split reported in [5]. As
the dendrogram reveals, the algorithm finds six commu-
nities. Some of them correspond to single conferences,
but most correspond to two or more. The GN algorithm,
by contrast, finds all eleven conferences, as well as accu-
rately identifying independent teams that belong to no
conference. Nonetheless, it is clear that the new algo-
rithm is quite capable of picking out useful community
structure from the network, and of course it is much the
faster algorithm. On the author’s personal computer the
algorithm ran to completion in an unmeasureably small
time—less than a hundredth of a second. The algorithm
of Girvan and Newman took a little over a second.

A time difference of this magnitude will not present
a big problem in most practical situations, but perfor-
mance rapidly becomes an issue when we look at larger
networks; we expect the ratio of running times to in-
crease with the number of vertices. Thus, for example,
in applying our algorithm to the 1275-node network of
jazz musician collaborations mentioned above, we found
that it runs to completion in about one second of CPU
time. The GN algorithm by contrast takes more than
three hours to reach very similar results.

As an example of an analysis made possible by the
speed of the new algorithm, we have looked at a network
of collaborations between physicists as documented by
papers posted on the widely-used Physics E-print Archive
at arxiv.org. The network is an updated version of the
one described in Ref. 13, in which scientists are consid-
ered connected if they have coauthored one or more pa-
pers posted on the archive. We analyze only the largest
component of the network, which contains n = 56 276 sci-
entists in all branches of physics covered by the archive.
Since two vertices that are unconnected by any path are
never put in the same community by our algorithm, the
small fraction of vertices that are not part of the largest
component can safely be assumed to be in separate com-
munities in the sense of our algorithm. Our algorithm
takes 42 minutes to find the full community structure.
Our best estimates indicate that the GN algorithm would
take somewhere between three and five years to complete
its version of the same calculation.

The analysis reveals that the network in question con-
sists of about 600 communities, with a high peak modu-
larity of Q = 0.713, indicating strong community struc-
ture in the physics world. Four of the communities found
are large, containing between them 77% of all the ver-
tices, while the others are small—see Fig. 4, left panel.
The four large communities correspond closely to subject
subareas: one to astrophysics, one to high-energy physics,
and two to condensed matter physics. Thus there ap-
pears to be a strong correlation between the structure
found by our algorithm and the community divisions per-
ceived by human observers. It is precisely correlation
of this kind that makes community structure analysis a
useful tool in understanding the behavior of networked
systems.

We can repeat the analysis with any of the subcom-



Applica=on	
  to	
  Amazon	
  
Recommeda=ons	
  

•  Network	
  of	
  products.	
  
•  A	
  link	
  between	
  product	
  a	
  and	
  product	
  b	
  if	
  b	
  
was	
  frequently	
  purchased	
  by	
  buyers	
  of	
  a.	
  

•  200000	
  nodes	
  and	
  2M	
  edges.	
  
•  Max	
  when	
  1684	
  communi=es	
  
•  Mean	
  size	
  of	
  243	
  products	
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FIG. 1: The modularity Q over the course of the algorithm
(the x axis shows the number of joins). Its maximum value is
Q = 0.745, where the partition consists of 1684 communities.

in practical situations it is usually unnecessary to main-
tain the separate max-heaps for each row. These heaps
are used to find the largest element in a row quickly, but
their maintenance takes a moderate amount of effort and
this effort is wasted if the largest element in a row does
not change when two rows are amalgamated, which turns
out often to be the case. Thus we find that the following
simpler implementation works quite well in realistic sit-
uations: if the largest element of the kth row was ∆Qki

or ∆Qkj and is now reduced by Eq. (10b) or (10c), we
simply scan the kth row to find the new largest element.
Although the worst-case running time of this approach
has an additional factor of n, the average-case running
time is often better than that of the more sophisticated
algorithm. It should be noted that the hierarchies gen-
erated by these two versions of our algorithm will differ
slightly as a result of the differences in how ties are bro-
ken for the maximum element in a row. However, we find
that in practice these differences do not cause significant
deviations in the modularity, the community size distri-
bution, or the composition of the largest communities.

III. AMAZON.COM PURCHASING NETWORK

The output of the algorithm described above is pre-
cisely the same as that of the slower hierarchical algo-
rithm of [32]. The much improved speed of our algorithm
however makes possible studies of very large networks for
which previous methods were too slow to produce useful
results. Here we give one example, the analysis of a co-
purchasing or “recommender” network from the online
vendor Amazon.com. Amazon sells a variety of products,
particularly books and music, and as part of their web
sales operation they list for each item A the ten other
items most frequently purchased by buyers of A. This

FIG. 2: A visualization of the community structure at max-
imum modularity. Note that the some major communities
have a large number of “satellite” communities connected only
to them (top, lower left, lower right). Also, some pairs of ma-
jor communities have sets of smaller communities that act
as “bridges” between them (e.g., between the lower left and
lower right, near the center).

information can be represented as a directed network in
which vertices represent items and there is a edge from
item A to another item B if B was frequently purchased
by buyers of A. In our study we have ignored the directed
nature of the network (as is common in community struc-
ture calculations), assuming any link between two items,
regardless of direction, to be an indication of their simi-
larity. The network we study consists of items listed on
the Amazon web site in August 2003. We concentrate on
the largest component of the network, which has 409 687
items and 2 464 630 edges.

The dendrogram for this calculation is of course too
big to draw, but Fig. 1 illustrates the modularity over the
course of the algorithm as vertices are joined into larger
and larger groups. The maximum value is Q = 0.745,
which is high as calculations of this type go [21, 32]
and indicates strong community structure in the network.
The maximum occurs when there are 1684 communities
with a mean size of 243 items each. Fig. 2 gives a visual-
ization of the community structure, including the major
communities, smaller “satellite” communities connected
to them, and “bridge” communities that connect two ma-
jor communities with each other.

Looking at the largest communities in the network, we
find that they tend to consist of items (books, music) in
similar genres or on similar topics. In Table I, we give in-
formal descriptions of the ten largest communities, which
account for about 87% of the entire network. The remain-
der is generally divided into small, densely connected
communities that represent highly specific co-purchasing
habits, e.g., major works of science fiction (162 items),
music by John Cougar Mellencamp (17 items), and books



Amazon:	
  Top	
  Communi=es	
  	
  
(87%	
  of	
  nodes)	
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Rank Size Description
1 114538 General interest: politics; art/literature; general fiction; human nature; technical books; how things,

people, computers, societies work, etc.
2 92276 The arts: videos, books, DVDs about the creative and performing arts
3 78661 Hobbies and interests I: self-help; self-education; popular science fiction, popular fantasy; leisure; etc.
4 54582 Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic

fiction; some western religious material; etc.
5 9872 classical music and related items
6 1904 children’s videos, movies, music and books
7 1493 church/religious music; African-descent cultural books; homoerotic imagery
8 1101 pop horror; mystery/adventure fiction
9 1083 jazz; orchestral music; easy listening
10 947 engineering; practical fashion

TABLE I: The 10 largest communities in the Amazon.com network, which account for 87% of the vertices in the network.
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FIG. 3: Cumulative distribution of the sizes of communities
when the network is partitioned at the maximum modularity
found by the algorithm. The distribution appears to follow
a power law form over two decades in the central part of its
range, although it deviates in the tail. As a guide to the
eye, the straight line has slope −1, which corresponds to an
exponent of α = 2 for the raw probability distribution.

about (mostly female) spies in the American Civil War
(13 items). It is worth noting that because few real-
world networks have community metadata associated
with them to which we may compare the inferred com-
munities, this type of manual check of the veracity and
coherence of the algorithm’s output is often necessary.

One interesting property recently noted in some net-
works [30, 32] is that when partitioned at the point
of maximum modularity, the distribution of community
sizes s appears to have a power-law form P (s) ∼ s−α

for some constant α, at least over some significant range.
The Amazon co-purchasing network also seems to ex-
hibit this property, as we show in Fig. 3, with an expo-
nent α ≃ 2. It is unclear why such a distribution should
arise, but we speculate that it could be a result either of

the sociology of the network (a power-law distribution in
the number of people interested in various topics) or of
the dynamics of the community structure algorithm. We
propose this as a direction for further research.

IV. CONCLUSIONS

We have described a new algorithm for inferring com-
munity structure from network topology which works by
greedily optimizing the modularity. Our algorithm runs
in time O(md log n) for a network with n vertices and
m edges where d is the depth of the dendrogram. For
networks that are hierarchical, in the sense that there
are communities at many scales and the dendrogram is
roughly balanced, we have d ∼ log n. If the network is
also sparse, m ∼ n, then the running time is essentially
linear, O(n log2 n). This is considerably faster than most
previous general algorithms, and allows us to extend com-
munity structure analysis to networks that had been con-
sidered too large to be tractable. We have demonstrated
our algorithm with an application to a large network of
co-purchasing data from the online retailer Amazon.com.
Our algorithm discovers clear communities within this
network that correspond to specific topics or genres of
books or music, indicating that the co-purchasing ten-
dencies of Amazon customers are strongly correlated with
subject matter. Our algorithm should allow researchers
to analyze even larger networks with millions of vertices
and tens of millions of edges using current computing re-
sources, and we look forward to seeing such applications.
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•  A	
  power	
  law	
  
distribu=on	
  of	
  
community	
  size	
  

•  (more	
  on	
  
power	
  laws	
  in	
  
later	
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FIG. 3: Cumulative distribution of the sizes of communities
when the network is partitioned at the maximum modularity
found by the algorithm. The distribution appears to follow
a power law form over two decades in the central part of its
range, although it deviates in the tail. As a guide to the
eye, the straight line has slope −1, which corresponds to an
exponent of α = 2 for the raw probability distribution.

about (mostly female) spies in the American Civil War
(13 items). It is worth noting that because few real-
world networks have community metadata associated
with them to which we may compare the inferred com-
munities, this type of manual check of the veracity and
coherence of the algorithm’s output is often necessary.

One interesting property recently noted in some net-
works [30, 32] is that when partitioned at the point
of maximum modularity, the distribution of community
sizes s appears to have a power-law form P (s) ∼ s−α

for some constant α, at least over some significant range.
The Amazon co-purchasing network also seems to ex-
hibit this property, as we show in Fig. 3, with an expo-
nent α ≃ 2. It is unclear why such a distribution should
arise, but we speculate that it could be a result either of

the sociology of the network (a power-law distribution in
the number of people interested in various topics) or of
the dynamics of the community structure algorithm. We
propose this as a direction for further research.

IV. CONCLUSIONS

We have described a new algorithm for inferring com-
munity structure from network topology which works by
greedily optimizing the modularity. Our algorithm runs
in time O(md log n) for a network with n vertices and
m edges where d is the depth of the dendrogram. For
networks that are hierarchical, in the sense that there
are communities at many scales and the dendrogram is
roughly balanced, we have d ∼ log n. If the network is
also sparse, m ∼ n, then the running time is essentially
linear, O(n log2 n). This is considerably faster than most
previous general algorithms, and allows us to extend com-
munity structure analysis to networks that had been con-
sidered too large to be tractable. We have demonstrated
our algorithm with an application to a large network of
co-purchasing data from the online retailer Amazon.com.
Our algorithm discovers clear communities within this
network that correspond to specific topics or genres of
books or music, indicating that the co-purchasing ten-
dencies of Amazon customers are strongly correlated with
subject matter. Our algorithm should allow researchers
to analyze even larger networks with millions of vertices
and tens of millions of edges using current computing re-
sources, and we look forward to seeing such applications.
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Limita=ons	
  of	
  Modularity	
  

•  Modularity	
  is	
  not	
  a	
  perfect	
  measures	
  
•  It	
  appears	
  to	
  depend	
  on	
  the	
  number	
  of	
  links	
  in	
  
the	
  network	
  (L).	
  

•  Problems	
  for	
  modules	
  with	
  a	
  number	
  of	
  
internal	
  links	
  of	
  the	
  order	
  of	
  √2L	
  or	
  smaller.	
  

•  Intui=on:	
  modularity	
  depends	
  on	
  links	
  of	
  a	
  
community	
  to	
  the	
  “outside”,	
  ie	
  the	
  rest	
  of	
  the	
  
network.	
   S.	
  Fortunato,	
  S.	
  Barthelemy.	
  Resolu=on	
  

limit	
  in	
  community	
  detec=on.	
  Proc.	
  Natl.	
  
Acad.	
  Sci.,	
  2007.	
  



Louvain	
  Method	
  

•  The	
  Louvain	
  method	
  is	
  more	
  efficient	
  and	
  
more	
  accurate.	
  

•  Step	
  1:	
  for	
  each	
  node	
  i	
  consider	
  neighbours	
  (j)	
  
and	
  evaluate	
  gain	
  in	
  modularity	
  of	
  community	
  
if	
  i	
  moves	
  to	
  j’s	
  community.	
  Do	
  this	
  for	
  all	
  
nodes.	
  Stop	
  when	
  no	
  improvement	
  can	
  be	
  
achieved.	
  

•  Step	
  2:	
  see	
  each	
  created	
  community	
  as	
  a	
  node	
  
and	
  repeat	
  step	
  1.	
  Stop	
  when	
  maximum	
  
modularity	
  is	
  obtained.	
  



Efficiency	
  

•  Extremely	
  faster	
  than	
  other	
  algorithms	
  
•  Complexity	
  is	
  linear	
  on	
  typical	
  and	
  sparse	
  
data.	
  
– Modularity	
  is	
  easy	
  to	
  compute	
  and	
  number	
  of	
  
communi=es	
  decreases	
  dras=cally	
  azer	
  a	
  few	
  
steps.	
  

– Probability	
  that	
  2	
  communi=es	
  can	
  be	
  merged	
  by	
  
just	
  moving	
  one	
  node	
  is	
  very	
  low	
  (overcoming	
  the	
  
problem	
  of	
  the	
  resolu=on	
  limit)	
  



Performance	
  and	
  Modularity	
  results	
  
for	
  various	
  networks	
  and	
  approaches	
  



Louvain	
  over	
  a	
  telecom	
  network	
  	
  
in	
  Belgium	
  

The	
  colours	
  are	
  different	
  
languages	
  spoken	
  by	
  
people.	
  The	
  intermediate	
  
node	
  is	
  one	
  with	
  a	
  lot	
  of	
  
language	
  mixing.	
  
	
  
Edges	
  are	
  calls.	
  Each	
  of	
  
these	
  communi=es	
  are	
  
more	
  than	
  100	
  people.	
  



Overlapping	
  Communi=es	
  

Uncovering the overlapping community structure of
complex networks in nature and society
Gergely Palla1,2, Imre Derényi2, Illés Farkas1 & Tamás Vicsek1,2

Many complex systems in nature and society can be described in
terms of networks capturing the intricate web of connections
among the units they are made of1–4. A key question is how to
interpret the global organization of such networks as the co-
existence of their structural subunits (communities) associated
with more highly interconnected parts. Identifying these a priori
unknown building blocks (such as functionally related proteins5,6,
industrial sectors7 and groups of people8,9) is crucial to the
understanding of the structural and functional properties of
networks. The existing deterministic methods used for large net-
works find separated communities, whereas most of the actual
networks are made of highly overlapping cohesive groups of
nodes. Here we introduce an approach to analysing the main
statistical features of the interwoven sets of overlapping commu-
nities that makes a step towards uncovering the modular structure
of complex systems. After defining a set of new characteristic
quantities for the statistics of communities, we apply an efficient
technique for exploring overlapping communities on a large scale.
We find that overlaps are significant, and the distributions we
introduce reveal universal features of networks. Our studies of
collaboration, word-association and protein interaction graphs
show that the web of communities has non-trivial correlations and
specific scaling properties.
Most real networks typically contain parts in which the nodes

(units) are more highly connected to each other than to the rest of
the network. The sets of such nodes are usually called clusters,
communities, cohesive groups or modules8,10,11–13; they have no
widely accepted, unique definition. In spite of this ambiguity,
the presence of communities in networks is a signature of the
hierarchical nature of complex systems5,14. The existing methods
for finding communities in large networks are useful if the commu-
nity structure is such that it can be interpreted in terms of separated
sets of communities (see Fig. 1b and refs 10, 15, 16–18). However,
most real networks are characterized by well-defined statistics of
overlapping and nested communities. This can be illustrated by the
numerous communities that each of us belongs to, including those
related to our scientific activities or personal life (school, hobby,
family) and so on, as shown in Fig. 1a. Furthermore, members of our
communities have their own communities, resulting in an extremely
complicated web of the communities themselves. This has long been
understood by sociologists19 but has never been studied system-
atically for large networks. Another, biological, example is that a
large fraction of proteins belong to several protein complexes
simultaneously20.
In general, each node i of a network can be characterized by a

membership number mi, which is the number of communities that
the node belongs to. In turn, any two communities a and b can share
sova;b nodes, which we define as the overlap size between these
communities. Naturally, the communities also constitute a network,

with the overlaps being their links. The number of such links of
community a can be called its community degree, dcoma : Finally, the
size scoma of any community a can most naturally be defined as the
number of its nodes. To characterize the community structure of a
large network we introduce the distributions of these four basic
quantities. In particular we focus on their cumulative distribution

LETTERS

Figure 1 | Illustration of the concept of overlapping communities. a, The
black dot in the middle represents either of the authors of this paper, with
several of his communities around. Zooming in on the scientific community
demonstrates the nested and overlapping structure of the communities, and
depicting the cascades of communities starting from some members
exemplifies the interwoven structure of the network of communities.
b, Divisive and agglomerative methods grossly fail to identify the
communities when overlaps are significant. c, An example of overlapping
k-clique communities at k ¼ 4. The yellow community overlaps the blue one
in a single node, whereas it shares two nodes and a link with the green one.
These overlapping regions are emphasized in red. Notice that any k-clique
(complete subgraph of size k) can be reached only from the k-cliques of the
same community through a series of adjacent k-cliques. Two k-cliques are
adjacent if they share k 2 1 nodes.

1Biological Physics Research Group of the Hungarian Academy of Sciences, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Department of Biological Physics, Eötvös University,
Pázmány P. stny. 1A, H-1117 Budapest, Hungary.

Vol 435|9 June 2005|doi:10.1038/nature03607
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© 2005 Nature Publishing Group 

 

•  Community	
  
membership	
  
could	
  overlap:	
  
a	
  node	
  could	
  
be	
  part	
  of	
  more	
  
than	
  1	
  
community.	
  



Nodes	
  can	
  belong	
  to	
  more	
  
	
  than	
  1	
  social	
  circle!	
  

[Palla et�al.,�)05]

� A node belongs to many social circles� A�node�belongs�to�many�social�circles
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Clique	
  Percola=on	
  Method:	
  
	
  the	
  idea	
  (Palla	
  2005)	
  

•  Two	
  nodes	
  belong	
  to	
  the	
  same	
  community	
  if	
  
they	
  can	
  be	
  connected	
  through	
  adjacent	
  k-­‐
cliques.	
  

•  A	
  k-­‐clique	
  is	
  a	
  fully	
  connected	
  graph	
  of	
  k	
  
nodes.	
  

•  K-­‐cliques	
  are	
  adjacent	
  if	
  they	
  have	
  k-­‐1	
  
overlapping	
  nodes.	
  

•  K-­‐clique	
  community:	
  nodes	
  which	
  can	
  be	
  
reached	
  through	
  a	
  sequence	
  of	
  adjacent	
  k-­‐
cliques.	
  

[Palla et�al.,�)05]

� Two nodes belong to the same community if theyTwo�nodes�belong�to�the�same�community�if�they�
can�be�connected�through�adjacent�k�cliques:
� k�clique:

� Fully�connected�
graph�on�k nodes

� Adjacent k�cliques: 4-cliqueAdjacent�k cliques:
� overlap�in�k-1 nodes

� k�clique�community
� Set�of�nodes�that�can�
be�reached�through�a�
sequence of adjacent

adjacent
3-cliques

sequence�of�adjacent�
k�cliques
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Clique	
  Percola=on	
  Method:	
  
	
  The	
  algorithm	
  

•  Find	
  the	
  maximal	
  cliques	
  
– A	
  maximal	
  clique	
  is	
  a	
  clique	
  that	
  cannot	
  be	
  extended	
  
by	
  including	
  one	
  more	
  adjacent	
  vertex	
  

–  This	
  is	
  complex	
  but	
  real	
  networks	
  are	
  rela=vely	
  
sparse.	
  

•  Build	
  clique	
  overlap	
  matrix	
  
–  Each	
  clique	
  is	
  a	
  node	
  
–  Connect	
  two	
  cliques	
  if	
  they	
  overlap	
  in	
  at	
  least	
  k-­‐1	
  
nodes	
  

•  Communi=es:	
  	
  
–  Connected	
  components	
  of	
  the	
  clique	
  overlap	
  matrix	
  



Example	
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Figure 1: A simple illustration of the extraction of the k-clique-communities at k = 4 using the clique-
clique overlap matrix. Top left picture shows the graph in which the different cliques are marked by
different colours. The according clique-clique overlap matrix is shown in the top right corner. To obtain
the k-clique-communities at k = 4, we delete the off-diagonal elements that are smaller than 3 and also
the diagonal elements that are smaller than 4, resulting in the matrix shown in the bottom left of the
figure. The connected components (the k-clique-communities) corresponding to this matrix are shown
in the bottom right.

and every diagonal element smaller than k in the matrix, replacing the remaining elements by one, and
then carrying out a component analysis of this matrix. The resulting separate components are equivalent
to the different k-clique-communities. A simple illustration of the above is given in Fig. 1.

Another advantage of this method is that the clique-clique overlap matrix encodes all information
necessary to obtain the communities for any value of k, therefore once the clique-clique overlap matrix
is constructed, the k-clique-communities for all possible values of k can be obtained very quickly. In
contrast to this, in a simple k-clique finding approach the search for the k-cliques would have to be
restarted from the beginning for every single value of k.

1.1.2 Locating the cliques

As discussed in the previous section, in contrast to the k-cliques, cliques cannot be subsets of larger
cliques, therefore they have to be located in a decreasing order of their size. The largest possible clique
size in the studied graph is determined from the degree-sequence. Starting with this clique size, our
algorithm repeatedly chooses a node, extracts every clique of this size containing that node, then deletes
the node and its edges. (The deletion of the already examined nodes inhibits the finding of the same
clique multiple times). When no nodes are left, the clique size is decreased by one and the clique finding
procedure is restarted on the original graph. The already found cliques influence the further search since
the yet unrevealed (smaller) cliques cannot be subsets of them.

The cliques of size s containing a given node v can be found by examining the interrelations of the
neighbours of v. In our algorithm this is implemented in the following way: First, a set A is constructed

3

Maximal	
  
cliques	
  

Overlap	
  Matrix:	
  
elements	
  are	
  n.	
  of	
  
overlapping	
  
nodes	
  

Erase	
  elements	
  
less	
  than	
  4	
  on	
  
diagonal	
  and	
  less	
  
than	
  3	
  elsewhere	
  

K-­‐cliques	
  



Applica=on	
  

Overlapping	
  
networks:	
  
1)  Parisi’s	
  

coauthorship	
  
networks	
  

2)  Networks	
  of	
  
“bright”	
  in	
  the	
  
word	
  associa=on	
  
network	
  

3)  Protein	
  to	
  protein	
  
interac=on	
  
network	
  	
  

	
  



Applica=on:	
  	
  
Phone	
  Call	
  Network	
  

[Palla et�al.,�)07]

Communities�in�a�
4tiny6�part�of�a�phone�

ll � t k� f� �calls�network�of�4�
million�users�
[Barabasi�Palla,�2007]
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From	
  Leskovec	
  



Community	
  Detec=on	
  	
  
and	
  Weak	
  Ties	
  

•  Twicer	
  was	
  analyzed	
  trying	
  to	
  iden=fy	
  if	
  the	
  
sta=c	
  network	
  of	
  followers	
  gives	
  informa=on	
  
about	
  the	
  dynamics	
  of	
  retwee=ng	
  and	
  
men=oning.	
  

•  Dataset:	
  follower	
  network	
  (undirected),	
  2M	
  
users,	
  and	
  network	
  of	
  tweets,	
  men=on	
  and	
  
retweets	
  for	
  1	
  month.	
  

•  Some	
  community	
  detec=on	
  methods	
  are	
  used	
  
to	
  find	
  clusters	
  in	
  the	
  follower	
  network.	
  



Sample	
  
A

between groups bridge links no-group linksinternal links

B

•  Gray:	
  followers	
  
•  Red:	
  men=ons	
  
•  Green:	
  retweet	
  
•  3	
  groups,	
  one	
  user	
  
between	
  groups.	
  



Some	
  sta=s=cs	
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Internal	
  Links	
   3

Oslom [30, 31] (see Methods). The analysis has also
been performed with other clustering techniques [32–36],
reaching similar conclusions (see Appendix I for a de-
tailed account on these results). We have detected 92, 062
groups, three of which are graphically depicted in Fig-
ure 1A with each sphere corresponding to a single user.
In general, the links can be classified according to their
position with respect to the user groups: internal, be-
tween groups, bridges and links involving nodes not as-
signed to any group as shown in Figure 1B.

The statistics characterizing the groups and links are
displayed in Figure 2. The group size distribution decays
slowly for three orders of magnitude and does not show
a characteristic group size (Figure 2A). For instance, the
largest group contains around 10, 000 users. Also the
number of groups each user belongs to shows high het-
erogeneity: 37.4% of the users has not been allocated to
any group, while there exists a user belonging to more
than 100 groups (see Figure 2B). The percentage of links
falling in the di�erent types regarding the groups is de-
picted in Figure 2C. Although the non-classified users
are 37% of the total, the links connected to them are less
than 6% and the percentage is even lower for those with
mentions or retweets. The most common type of con-
nections is the between-group links. One may wonder if
the algorithm for clusters detection is doing a good job
when there is such a large proportion of between-group
links. The clustering method is trying to find groups of
mutually interconnected nodes that would be extremely
rare in a randomized instance of the network, rather
than optimizing the ratio between number of between-
group and internal links. In the Appendix II, this ar-
gument is further developed and the capacity of Oslom
to detect planted communities is proved in a benchmark
even in situations with a high ratio between the number
of between-groups and internal links. Another relevant
point to highlight is the di�erent potential of each type of
links to carry mentions and retweets. As it can be seen in
the Figure 2C, the red bars for mentions in internal links
and bridges almost double the abundance of links in the
follower network in these categories. The links between
groups, on the other hand, attract far less mentions.

Internal links. According to Granovetter’s the-
ory, one could expect the internal connections inside a
group to bear closer relations. Mechanisms such as ho-
mophily [37], cognitive balance [38, 39] or triadic clo-
sure [24] favor this kind of structural configurations. Un-
fortunately, we have no means to measure the closeness of
a user-user relation in a sociological sense in our Twitter
dataset. However we can verify whether the link has been
used for mentions, whether the interchange has been re-
ciprocated or whether it has happened more than once.
The fraction of links of each type internal to the groups
as a function of the group size reveals an interesting pat-
tern as can be seen in Figure 3A. Note that the fraction
of links in the follower network is taken as the reference
for comparison. Links with mentions are more abundant
as internal links than the baseline follower relations for
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FIG. 3: Internal activity. (A) Fraction of internal links as
a function of the group size in number of users. The curve
for the follower network acts as baseline for mentions and
retweets. Note that if mentions/retweets were randomly ap-
pearing over follower links then the red/green curve should
match the black curve. (B) Distribution of the number of
mentions per link. (C) Fraction of links with mentions as a
function of their intensity. The dashed curves are the total
for the follower network (black) and for the links with men-
tions (red). While the other curves correspond (from bottom
to top) to fractions of links with: 1 non-reciprocated mention
(diamonds), 3 mentions (circles), 6 mentions (triangle up) and
more than 6 reciprocated mentions (triangle down).

groups of size up to 150 users. This particular value
brings reminiscences of the quantity known as the Dun-
bar number [40], the cognitive limit to the number of peo-
ple with whom each person can have a close relationship
and that has recently been discussed in the context of
Twitter [41]. Although we have identified larger groups,
the density of mentions is similar to the density of links
in the follower network. In addition, the distribution of
the number of times that a link is used (its intensity) for
mentions is wide, which allows for a systematic study of
the dependence of intensity and position (see Figure 3B).
The more intense (or reciprocated) a link with mentions
is, the more likely it becomes to find this link as internal
(Figure 3C).

Links between groups. The next question to con-
sider is the characteristics of links between groups. These
links occur mainly between groups containing less than
200 users (Figure 4A-C). However, their frequency de-
pends on the quality of the links (if they bear mentions

Internal	
  men=ons	
  are	
  more	
  
than	
  follower	
  links	
  with	
  
groups	
  around	
  100.	
  

The	
  distribu=on	
  of	
  men=ons	
  
over	
  links	
  is	
  quite	
  wide	
  

C:	
  The	
  dashed	
  curves	
  are	
  the	
  
total	
  for	
  the	
  follower	
  network	
  
(black)	
  and	
  for	
  the	
  links	
  with	
  
men=ons	
  (red).	
  Others	
  (from	
  
bocom	
  to	
  top):	
  frac=ons	
  of	
  
links	
  with:	
  1	
  non-­‐reciprocated	
  
men=ons	
  (diamonds),	
  3	
  
men=ons	
  (circles),	
  6	
  men=ons	
  
(triangle	
  up)	
  and	
  more	
  than	
  6	
  
reciprocated	
  men=ons	
  
(triangle	
  down).	
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FIG. 4: Group-group activity. (A) Distribution of the number
of links in the follower network between groups as a function
of the size of the groups. (B) Fractions of links of the di�erent
types (follower, with mentions and with retweets) as a func-
tion of the size of the group at the link origin, and (C) at the
targeted group. (D) Frequency of between-group links as a
function of the group-group similarity for the di�erent type of
links. In the inset, ratio between the frequency of links with
retweets and with mentions.

or retweets). While links with mentions are less abun-
dant than the baseline, those with retweets are slightly
more abundant. According to the strength of weak ties
theory [24, 26, 27], weak links are typically connections
between persons not sharing neighbors, being important
to keep the network connected and for information dif-
fusion. We investigate whether the links between groups
play a similar role in the online network as information
transmitters and if this is related to the overlap of the
connected individuals’ local environments. The actions
more related to information di�usion are retweets [14]
that show a slight preference for occurring on between-
group links (Figures 4B and 4C). This preference is en-
hanced when the similarity between connected groups is
taken into account. We define the similarity between two
groups, A and B, in terms of the Jaccard index of their
connections:

similarity(A,B) =
| ⇥ links of A and B|
| � links of A and B| . (1)

The similarity estimates the overlap between the groups’
connections. The general pattern is that links with
mentions more likely occur between closer groups, while
retweets occur between groups with low similarity (Fig-
ure 4D). Mentions as personal messages are typically ex-
changed between users with similar environments.

Links with retweets are related to information transfer
and the similarity of the groups between which they take
place is small. It is more natural for a user to retweet

news from groups that are related to her own, but still
not too close either. Otherwise the information could
have already propagated by other channels. This trend
is not related to the size of the considered groups (see
Appendix III).
Bridge links. The communication between groups

can take place in two ways. The information can prop-
agate by means of links between groups or by passing
through an intermediary user belonging to more than
one group. These users have a high potential as infor-
mation bridges between communities [25]. Actually, sev-
eral previous works pointed out to the existence of spe-
cial users in Twitter regarding the communication in the
network [18, 42]. We call the links connected to bridg-
ing users bridges by extension. Bridges behave similarly
to internal links regarding the mentions: the fraction of
bridges with mentions is similar to the fraction of inter-
nal links with mentions as is shown in Figure 5A. The
aspect that di�erentiate the bridges is the way they at-
tract retweets. Bridges bear retweets with a higher likeli-
hood than either internal or between-groups connections
(see Figure 5A and Appendix III). Furthermore, the like-
lihood of finding retweets on a bridge increases with the
number of groups assigned to the users connected by the
link (Figure 5B). Our results highlight therefore the rel-
evance of bridges in the propagation of information in
the network playing a role similar to the weak ties in
Granovetter’s theory.

III. DISCUSSION

In summary, we have found groups of users analyz-
ing the follower network of Twitter with clustering tech-
niques. The activity in the network in terms of the mes-
sages called mentions and retweets clearly correlates with
the landscape that the presence of the groups introduces
in the network. Mentions, which are supposed to be
more personal messages, tend to concentrate inside the
groups or on links connecting close groups. Retweets,
which are associated to information propagation events,
appear with higher probability in links between groups,
especially those that connect groups that do not show a
high overlap, and more importantly on links connected to
users that act as bridges between groups. These bridging
users and their links, that we call bridges, play an impor-
tant role in the spreading of new information. The bridg-
ing users acquire information in one group and launch
retweets targeting the other groups of which they are
members. The relevance of certain users for the spread
of information in online social media has been discussed
in previous works. Our method provides a way to iden-
tify these special users as brokers of information between
di�erent groups using as only input the follower network.
From the sociological point of view, the way that the

activity localizes with respect to the groups allow us to
establish a parallelism with the organization of o⇤ine
social networks. In particular, we have shown that the
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theory of the strength of weak ties proposed by Granovet-
ter to characterize o⇤ine social network applies also to
an online network. The specific properties of Twitter of-
fers an opportunity to study directly the importance of
the links for personal communications or for information
di�usion. According to the theory, the strongest social
ties should tend to appear at the interior of the groups
or between close groups as happens for the links with
mentions in Twitter. In addition, the socially weak ties
are expected to be more common connecting di�erent
groups and to be important for the propagation of in-
formation in the network. This is similar to what we
observe for the links with retweets that concentrate with
high probability in links between dissimilar groups or in
bridges. Besides the roles assigned by Granovetter’s the-
ory to the links, we have found that bridging users are
also an important component to take into account for un-
derstanding information propagation. Despite the myth
of one million friends and the doubts on the social valid-
ity of online links, the simplest connections of the online
network bear valuable information on where higher qual-
ity interactions take place. The parallelism established
by our results in the organization of online and o⇤ine
networks suggests that a revision on the importance of
online networks as information sources to understand so-
cial relations is needed.

IV. MATERIALS AND METHODS

A. Description of the dataset

The data analyzed in this paper was collected in a two
step process: the fist stage corresponds to the collection
of the follower network (followers and followees), while

Property Follower Links with Links with

links mentions retweets

Users 2 408 534 377 760 26 480

Links 48 776 888 1 224 484 32 169

TABLE I: Overall characteristics of the follower network and
of the interactions taking place on it.

the second consists in the retrieval of the user activity
from the stream of Twitter (plain tweets, mentions and
retweets). In the first stage, the directed unweighted net-
work is obtained from the information on the followers
and followees of each user. The data was collected using
a breadth-first search technique: Starting from several
seeds, followers and followees of the seeds were retrieved.
Then the same procedure was repeated for the newly dis-
covered users obtaining a so-called snowball sampling of
the follower network. The procedure is stopped after sev-
eral steps when the number of newly discovered users in
n-th breadth is small compared with the total number
of users already discovered in the (n � 1)-th step. The
process was run in November 2008, gathering informa-
tion for a total of 2 408 534 users. Due to the internal
exploration of the network, one can anticipate that this
method tends to detect the users with the highest in or
out degree that belong to the largest connected cluster
of the network.
The second stage consists in searching for all the tweets

of the users found in the follower network for a period
of time from November 20 to December 11. The activity
dataset was constructed from these gathered tweets. The
tweets containing usernames with a ’@username’ func-
tional syntax were used for the mentions. Tweets that
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Summary	
  

•  We	
  have	
  discussed	
  modularity	
  based	
  
community	
  detec=on	
  as	
  well	
  as	
  overlapping	
  
community	
  detec=on.	
  

•  Many	
  methods	
  exist…	
  

•  We	
  have	
  shown	
  cluster	
  and	
  weak	
  =es	
  analysis	
  
on	
  an	
  online	
  social	
  network	
  dataset.	
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