L108: Category theory and logic Exercise sheet 3

Jonas Frey jlf460cl.cam.ac.uk

Revised: October 31, 2013, 14:29.

1. Natural deduction

Write proofs in natural deduction of the judgments

- (a) $X \Rightarrow Y, Y \Rightarrow Z \vdash X \Rightarrow Z$
- (b) $Y \vdash (X \Rightarrow Y) \Rightarrow Y$
- (c) $X \vdash (X \Rightarrow Y) \Rightarrow Y$
- (d) $((X \Rightarrow Y) \Rightarrow Y) \Rightarrow Y \vdash X \Rightarrow Y$

Write down the corresponding terms of simply typed lambda calculus.

2. Finite products

- (a) Define a concept of '*n*-ary' product $A_1 \times \cdots \times A_n$ $(n \in \mathbb{N})$ of objects $A_1, \ldots, A_n \in obj(\mathbb{C})$ of a category \mathbb{C} , generalizing the binary products introduced in the lecture.
- (b) For $n \in \mathbb{N}$ and $A_1, \ldots, A_n \in obj(\mathbb{C})$, define a category $\mathbf{Span}_{\mathbb{C}}(A_1, \ldots, A_n)$ whose terminal objects are the *n*-ary products of A_1, \ldots, A_n .
- (c) Show that if \mathbb{C} has binary products and a terminal object, then all *n*-ary products exist.
- (d) Given $A_1, \ldots, A_n, B \in obj(\mathbb{C})$, construct an isomorphism $j : (A_1 \times \cdots \times A_n) \times B \xrightarrow{\cong} A_1 \times \cdots \times A_n \times B$ (the left expression is a binary product of a of an *n*-ary product and a single object, while the right expression is an (n + 1)-ary product).
- 3. Show that the category **Preord** of preorders is cartesian closed, i.e. show that all finite products and exponential objects exist in **Preord**.

4. Right monoid actions

Let (M, \cdot, e) be a monoid. In the following we will write the multiplication in M as juxtaposition mn instead of $m \cdot n$.

A right action¹ of M on a set X (also called a right M-action) is a function

$$X \times M \to X, \qquad (x,m) \mapsto x \cdot m$$

such that

(i) $\forall x \in X . x \cdot e = x$

 $^{^{1}}$ In the literature it is more common to consider *left* actions, but we prefer right ones for reasons that will become clear later in the Lecture.

(ii) $\forall x \in X \ \forall m, n \in M . (x \cdot m) \cdot n = x \cdot (mn)$

Given monoid actions $X \times M \to X$, $Y \times M \to Y$ on sets X, Y, an *equivariant map* between them is a function $f: X \to Y$ such that

$$\forall x \in X \; \forall m \in M \; . \; f(x \cdot m) = f(x) \cdot m.$$

Right M-actions and equivariant maps form a category M-Set.

- (a) Show that *M*-**Set** has finite products
- (b) Show that the multiplication map $M \times M \to M, (m, n) \to mn$ can be viewed as a right action of M on itself. To avoid confusion, we denote the corresponding object of M-Set by \overline{M} .
- (c) Given $m \in M$ show that the function

$$\overline{m}: M \to M, \quad \overline{m}(n) = mn$$

is an equivariant map of type $\overline{M} \to \overline{M}$.

- (d) Show that every equivariant map of type $\overline{M} \to \overline{M}$ is of the form \overline{m} for some $m \in M$.
- (e) Given $X, Y \in obj(M-\mathbf{Set})$, show that the mapping

$$M-\mathbf{Set}(\overline{M}\times X,Y)\times M\to M-\mathbf{Set}(\overline{M}\times X,Y), \quad (h,m)\mapsto h\circ(\overline{m}\times \mathrm{id}_X)$$

defines a right *M*-action on M-**Set** $(\overline{M} \times X, Y)$.

Show that M-Set $(\overline{M} \times X, Y)$ equipped with this M-action is an exponential object Y^X in M-Set.

We conclude that M-Set is a cartesian closed category.