L108: Category theory and logic Exercise sheet 3

Jonas Frey jlf460cl.cam.ac.uk

Revised: November 1, 2013, 18:19.

1. Natural deduction

Write proofs in natural deduction of the judgments

(a) $X \Rightarrow Y, Y \Rightarrow Z \vdash X \Rightarrow Z$ (b) $Y \vdash (X \Rightarrow Y) \Rightarrow Y$ (c) $X \vdash (X \Rightarrow Y) \Rightarrow Y$ (d) $((X \Rightarrow Y) \Rightarrow Y) \Rightarrow Y \vdash X \Rightarrow Y$

Write down the corresponding terms of simply typed lambda calculus.

Solution. Here are the derivation trees:

$$\begin{array}{c} \underline{X \Rightarrow Y, Y \Rightarrow Z, X \vdash X} & X \Rightarrow Y, Y \Rightarrow Z, X \vdash X \Rightarrow Y \\ \hline \underline{X \Rightarrow Y, Y \Rightarrow Z, X \vdash Y} & X \Rightarrow Y, Y \Rightarrow Z, X \vdash Y \Rightarrow Z \\ \hline \underline{X \Rightarrow Y, Y \Rightarrow Z, X \vdash Z} \\ \hline \underline{X \Rightarrow Y, Y \Rightarrow Z, X \vdash Z} \\ \hline \underline{X \Rightarrow Y, Y \Rightarrow Z \vdash X \Rightarrow Z} \\ \hline \underline{X \Rightarrow Y, Y \Rightarrow Z \vdash X \Rightarrow Z} \\ \hline \underline{X, X \Rightarrow Y \vdash X \Rightarrow Y} \\ \underline{X, X \Rightarrow Y \vdash X \Rightarrow Y} \\ \underline{X, X \Rightarrow Y \vdash X \Rightarrow Y} \\ \hline \underline{X, X \Rightarrow Y \vdash X \Rightarrow Y} \\ \hline \underline{X, X \Rightarrow Y \vdash X} \\ \hline \underline{X \vdash (X \Rightarrow Y) \Rightarrow Y} \\ \hline \underline{A, X \vdash A} \\ \hline \underline{A, X \vdash X} \\ \hline \underline{A, X \vdash Y} \\ \hline \hline \underline{A, X \vdash Y} \\ \hline \hline \end{array}$$

with $A \equiv ((X \Rightarrow Y) \Rightarrow Y) \Rightarrow Y$. And here are the terms:

 $\begin{array}{ll} \text{(a)} & f{:}X \Rightarrow Y, g{:}Y \Rightarrow Z \vdash (\lambda x \,.\, g(fx)) : X \Rightarrow Z \\ \text{(b)} & y{:}Y \vdash (\lambda f \,.\, y) : (X \Rightarrow Y) \Rightarrow Y \end{array}$

- (c) $x: X \vdash (\lambda f \cdot fx) : (X \Rightarrow Y) \Rightarrow Y$
- (d) $x:((X \Rightarrow Y) \Rightarrow Y) \Rightarrow Y \vdash (\lambda y . x(\lambda z . zy)) : X \Rightarrow Y$

2. Finite products

(a) Define a concept of '*n*-ary' product $A_1 \times \cdots \times A_n$ $(n \in \mathbb{N})$ of objects $A_1, \ldots, A_n \in$ obj (\mathbb{C}) of a category \mathbb{C} , generalizing the binary products introduced in the lecture.

Solution. An *n*-ary product of $A_1, \ldots, A_n \in obj(\mathbb{C})$ is an object $A_1 \times \cdots \times A_n \in obj(\mathbb{C})$ together with morphisms $\pi_i : A_1 \times \cdots \times A_n \to A_i$ for $1 \leq i \leq n$ such that for all $X \in obj(\mathbb{C})$ and morphisms $f_i : X \to A_i$ $(1 \leq i \leq n)$ there exists a unique $h: X \to A_1 \times \cdots \times A_n$ such that $\pi_i \circ h = f_i$ for all i with $1 \leq i \leq n$.

(b) For $n \in \mathbb{N}$ and $A_1, \ldots, A_n \in \text{obj}(\mathbb{C})$, define a category $\operatorname{\mathbf{Span}}_{\mathbb{C}}(A_1, \ldots, A_n)$ whose terminal objects are the *n*-ary products of A_1, \ldots, A_n .

Solution. The objects of $\operatorname{\mathbf{Span}}_{\mathbb{C}}(A_1, \ldots, A_n)$ are tuples (X, f_1, \ldots, f_n) with $f_i : X \to A_i$. Morphisms from (X, f_1, \ldots, f_n) to (Y, g_1, \ldots, g_n) are morphisms $h : X \to Y$ in \mathbb{C} such that $g_i \circ h = f_i$ for $1 \leq i \leq n$.

(c) Show that if \mathbb{C} has binary products and a terminal object, then all *n*-ary products exist.

Solution. The terminal object is a nullary product of the empty tuple. 'Unary' products are just given by the objects themselves. For $n \ge 3$, we deduce the existence of *n*-ary products from the existence of binary ones, by induction on *n*. Assume that *n*-ary products and binary products exist in \mathbb{C} . Let $A_1, \ldots, A_{n+1} \in \mathbb{C}$. We define the (n+1)-ary product by $A_1 \times \cdots \times A_{n+1} = (A_a \times \cdots \times A_n) \times A_{n+1}$ (using the *n*-ary and the binary product), where the projection maps are the appropriate compositions of projections out of the *n*-ary and binary product.

Given X and $f_i: X \to A_i$ for $1 \le i \le n+1$, the n+1-fold target-tupeling is given by

$$\langle f_1, \ldots, f_{n+1} \rangle = \langle \langle f_1, \ldots, f_n \rangle, f_{n+1} \rangle.$$

Uniqueness follows from the respective uniqueness conditions for *n*-ary and binary products.

(d) Given $A_1, \ldots, A_n, B \in obj(\mathbb{C})$, construct an isomorphism $j : (A_1 \times \cdots \times A_n) \times B \xrightarrow{\cong} A_1 \times \cdots \times A_n \times B$ (the left expression is a binary product of a of an *n*-ary product and a single object, while the right expression is an (n + 1)-ary product).

Solution. In the proof of (c) we showed that $j : (A_1 \times \cdots \times A_n) \times B$ equipped with the obvious projection maps is an n + 1-ary product. In (b) we showed that products are terminal objects in a category of spans. Thus, if $A_1 \times \cdots \times A_n \times B$ is another product, there is a unique isomorphism between them which is compatible with all the projections.

3. Show that the category **Preord** of preorders is cartesian closed, i.e. show that all finite products and exponential objects exist in **Preord**.

Solution. A terminal object is given by the one-element preorder. Given preorders (D, \leq) and (E, \leq) , a binary product is given by $(D \times E, \leq)$ where the ordering is defined by $(d, e) \leq (d', e') :\Leftrightarrow d \leq d' \land e \leq e'$. To show that this defines a product, we have to show that the projection functions are monotone, and that $\langle f, g \rangle$ is monotone for monotone f, g, which is straightforward.

It remains to show the existence of exponential objects. We define $(E, \leq)^{(D,\leq)} = (\mathbf{Preord}((D,\leq),(E,\leq)),\leq)$ with $f \leq g :\Leftrightarrow \forall d \in D$. $fd \leq gd$. The evaluation $\varepsilon : (E,\leq)^{(D,\leq)} \times (D,\leq) \to (E,\leq)$ is defined by $(f,d) \mapsto f(d)$ as in **Set**. Given $f: (C,\leq) \times (D,\leq) \to (E,\leq)$, the map $\tilde{f}: (C,\leq) \to (E,\leq)^{(D,\leq)}$ is defined by $\tilde{f}(c)(d) = f(c,d)$ (also as in **Set**). To show that this defines an exponential, it remains to show that

- ε is monotone,
- \tilde{f} is well defined, i.e. $\tilde{f}(c)$ is monotone for all $c \in C$, and
- \tilde{f} is monotone w.r.t. the order on the exponential defined above,

which is all straightforward. Uniqueness of \tilde{f} follows then from the analogous argument in **Set**.

4. Right monoid actions

Let (M, \cdot, e) be a monoid. In the following we will write the multiplication in M as juxtaposition mn instead of $m \cdot n$.

A right action¹ of M on a set X (also called a right M-action) is a function

$$X \times M \to X, \qquad (x,m) \mapsto x \cdot m$$

such that

- (i) $\forall x \in X . x \cdot e = x$
- (ii) $\forall x \in X \ \forall m, n \in M . (x \cdot m) \cdot n = x \cdot (mn)$

Given monoid actions $X \times M \to X$, $Y \times M \to Y$ on sets X, Y, an *equivariant map* between them is a function $f: X \to Y$ such that

$$\forall x \in X \; \forall m \in M \, . \, f(x \cdot m) = f(x) \cdot m.$$

Right M-actions and equivariant maps form a category M-Set.

- (a) Show that *M*-**Set** has finite products
- (b) Show that the multiplication map $M \times M \to M, (m, n) \to mn$ can be viewed as a right action of M on itself. To avoid confusion, we denote the corresponding object of M-Set by \overline{M} .
- (c) Given $m \in M$ show that the function

$$\overline{m}: M \to M, \quad \overline{m}(n) = mn$$

is an equivariant map of type $\overline{M} \to \overline{M}$.

¹In the literature it is more common to consider *left* actions, but we prefer right ones for reasons that will become clear later in the lecture.

- (d) Show that every equivariant map of type $\overline{M} \to \overline{M}$ is of the form \overline{m} for some $m \in M$.
- (e) Given $X, Y \in obj(M$ -Set), show that the mapping

$$M$$
-Set $(\overline{M} \times X, Y) \times M \to M$ -Set $(\overline{M} \times X, Y), (h, m) \mapsto h \circ (\overline{m} \times \mathrm{id}_X)$

defines a right *M*-action on M-**Set**($\overline{M} \times X, Y$). Show that M-**Set**($\overline{M} \times X, Y$) equipped with this *M*-action is an exponential object Y^X in *M*-**Set**.

We conclude that M-Set is a cartesian closed category.