L108: Category theory and logic Exercise sheet 1

Jonas Frey jlf46@cl.cam.ac.uk

Revised: October 14, 2013, 15:36.

- 1. Can you define a category with exactly one object and two morphisms? How many such categories are there? Hint: write a 'multiplication table' for the composition of morphisms.
- 2. Let **Span** be the category with three objects X, L, R, whose only non-identity arrows are $p: X \to L$ and $q: X \to R$.

Let **CoSpan** be the category with three objects L, R, Y, whose only non-identity arrows are $i: L \to Y$ and $j: R \to Y$.

- (a) Complete the definitions of **Span** and **CoSpan** by giving the sets of morphisms between all pairs of objects, and defining the composition operations.
- (b) Draw pictures of the categories **Span** and **Cospan** including all morphisms.
- (c) Does any of the categories have a terminal object?
- 3. Let \mathbb{C} be a category. A morphism $m : A \to B$ in \mathbb{C} is called a *monomorphism*, if for every object $X \in obj(\mathbb{C})$ and for every pair $f, g : X \to A$ of morphisms we have

 $m \circ f = m \circ g$ implies f = g.

- (a) Prove that every isomorphism is a monomorphism.
- (b) Prove that if $m: A \to B$ and $n: B \to C$ are monomorphisms, then their composition $n \circ m: A \to C$ is a monomorphism
- (c) Prove that if $m : A \to B$ and $h : B \to C$ are morphisms in \mathbb{C} , and $h \circ m$ is a monomorphism, then m is a monomorphism.
- (d) Characterize the monomorphisms in the category **Set**.
- 4. Let \mathbb{C} be a category. The dual of \mathbb{C} is a category \mathbb{C}^{op} with the same objects as \mathbb{C} and where $\mathbb{C}^{op}(A, B) = \mathbb{C}(B, A)$.
 - (a) Complete the definition of the category \mathbb{C}^{op} .
 - (b) Give an example of a finite category which is not the same as its dual (up to isomorphism).
 - (c) Give an example of a finite category that is the same as its dual.
- 5. **Duality principle.** Using the concept of opposite category, we can *dualise* definitions in category theory. For example
 - an *initial object* in \mathbb{C} is a terminal object in \mathbb{C}^{op}

• an *epimorphism* in \mathbb{C} is a monomorphism in \mathbb{C}^{op}

Tasks:

- (a) Spell out the definitions of initial object and of epimorphism.
- (b) Does the category **Set** of sets have any initial objects?
- (c) Characterise the epimorphisms in the category **Set**.