
Regular Languages

L5 62



Kleene’s Theorem

Definition. A language is regular iff it is equal to L(M),
the set of strings accepted by some deterministic finite
automaton M.

Theorem.

(a) For any regular expression r, the set L(r) of strings
matching r is a regular language.

(b) Conversely, every regular language is the form L(r) for
some regular expression r.

L5 63





Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

! binary operators Union and Concat
! unary operator Star
! nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

E.g. can parse concrete syntax ϵ|(a(b∗)) as the abstract syntax tree

L3 29



(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

L5 65



(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &
u2 ∈ L(M2)}

Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

L5 65



(i) Base cases: show that {a}, {ε} and ∅ are regular languages.

(ii) Induction step for r1|r2: given NFAεs M1 and M2, construct
an NFAε Union(M1, M2) satisfying

L(Union(M1, M2)) = {u | u ∈ L(M1)∨ u ∈ L(M2)}
Thus if L(r1) = L(M1) and L(r2) = L(M2), then L(r1|r2) = L(Union(M1, M2)).

(iii) Induction step for r1r2: given NFAεs M1 and M2, construct an
NFAε Concat(M1, M2) satisfying

L(Concat(M1, M2)) = {u1u2 | u1 ∈ L(M1) &
u2 ∈ L(M2)}

Thus L(r1r2) = L(Concat(M1, M2)) when L(r1) = L(M1) and L(r2) = L(M2).

(iv) Induction step for r∗: given NFAε M, construct an NFAε

Star(M) satisfying

L(Star(M)) = {u1u2 . . . un | n ≥ 0 and each ui ∈ L(M)}
Thus L(r∗) = L(Star(M)) when L(r) = L(M).

L5 65



NFAs for regular expressions a, ϵ, ∅

q0
a q1 just accepts the one-symbol string a

q0 just accepts the null string, ε

q0 accepts no strings

L5 66



Union(M1, M2)

s1 M1

q0

ε

ε
s2 M2

accepting states = union of accepting states of M1 and M2

L5 67



For example,

if Ma = a

and Mb = b

then Union(Ma, Mb) =

a
ε

ε

b

L5 68



Concat(M1, M2)

s1 M1
ε s2 M2

accepting states are those of M2

L5 70



For example,

if M1 =
a

ε

ε

ε

ε b

ε

and M2 =
a

then Concat(M1, M2) =
a

ε

a ε ε

ε

ε b

ε

L5 71



Star(M)

q0
ε s M

ε

the only accepting state of Star(M) is q0

(N.B. doing without q0 by just looping back to s
and making that accepting won’t work – Exercise 4.1.)

L5 73



For example,

if M =

a
ε

ε

b

then Star(M) =
a

ε

ε

ε

ε b

ε

L5 74



Example

Regular expression (a|b)∗a

whose abstract syntax tree is

Concat

Star

Union

Syma Symb

Syma

is mapped to the NFAε Concat(Star(Union(Ma, Mb)), Ma) =

a

ε

a ε ε

ε

ε b

ε

(cf. Slides 68, 71 and 74).

L5 76



Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?

L5 77



Decidability of matching

We now have a positive answer to question (a) on Slide 38.
Given string u and regular expression r:

! construct an NFAε M satisfying L(M) = L(r);

! in PM (the DFA obtained by the subset construction, Slide 59)
carry out the sequence of transitions corresponding to u from the
start state to some state q (because PM is deterministic, there is
a unique such transition sequence);

! check whether q is accepting or not: if it is, then
u ∈ L(PM) = L(M) = L(r), so u matches r; otherwise
u /∈ L(PM) = L(M) = L(r), so u does not match r.

(The subset construction produces an exponential blow-up of the number of states: PM has 2n

states if M has n. This makes the method described above potentially inefficient – more efficient
algorithms exist that don’t construct the whole of PM.)

L5 78


