
Abstract Syntax Trees
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Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ∗ a (formal)
language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ∗.
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Concrete syntax: strings of symbols

! possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

! or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =

if x > 100 then x − 10

else f ( f ( x + 11 ) )

in f 1 end

(∗ v a l u e i s 9 9 ∗)
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Abstract syntax: finite rooted trees

! vertexes with n children are labelled by operators expecting n
arguments (n-ary operators) – in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

! label of the root gives the ‘outermost form’ of the whole phrase

E.g. for the ML expression
on Slide 25:

let

fun

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f 1
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Regular expressions (concrete syntax)

over a given alphabet Σ.

Let Σ′ be the 4-element set {ϵ, ∅, |, ∗} (assumed disjoint from Σ)

U = (Σ ∪ Σ′)∗

axioms:
a ϵ ∅

rules:
r

(r)

r s

r|s

r s

rs

r

r∗

(where a ∈ Σ and r, s ∈ U)
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Some derivations of regular expressions
(assuming a, b ∈ Σ)

ϵ

a

b

b∗

ab∗

ϵ|ab∗

ϵ a

ϵ|a

b

b∗

ϵ|ab∗
ϵ

a b

ab

ab∗

ϵ|ab∗

ϵ

a

b

b∗

(b∗)

a(b∗)

(a(b∗))

ϵ|(a(b∗))

ϵ a

ϵ|a

(ϵ|a)

b

b∗

(b∗)

(ϵ|a)(b∗)

ϵ

a b

ab

(ab)

(ab)∗

((ab)∗)

ϵ|((ab)∗)

L3 28



Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) consists of

! binary operators Union and Concat
! unary operator Star
! nullary operators (constants) Null, Empty and Syma

(one for each a ∈ Σ).

E.g. can parse concrete syntax ϵ|(a(b∗)) as the abstract syntax tree
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Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet Σ) as an ML datatype declaration:

datatype ′a RE = Union of (′a RE) ∗ (′a RE)
| Concat of (′a RE) ∗ (′a RE)
| Star of ′a RE

| Null

| Empty

| Sym of ′a

(the type ′
a RE is parameterised by a type variable ′

a standing for the alphabet Σ)
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Some abstract syntax trees of regular expressions
(assuming a, b ∈ Σ)

1. 2. 3.

Union

Null Concat

Syma Star

Symb

Concat

Union

Null Syma

Star

Symb

Union

Null Star

Concat

Syma Symb

(cf. examples on Slide 28)

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Syma, Star(Symb)))

2. Concat(Union(Null, Syma), Star(Symb))

3. Union(Null, Star(Concat(Syma, Symb)))
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Relating concrete and abstract syntax

for regular expressions over an alphabet Σ, via an
inductively defined relation ∼ between strings and trees:

a ∼ Syma ϵ ∼ Null ∅ ∼ Empty

r ∼ R

(r) ∼ R

r ∼ R s ∼ S

r|s ∼ Union(R, S)

r ∼ R s ∼ S

rs ∼ Concat(R, S)

r ∼ R

r∗ ∼ Star(R)
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For example:

ϵ|(a(b∗)) ∼ Union(Null, Concat(Syma, Star(Symb)))

ϵ|ab∗ ∼ Union(Null, Concat(Syma, Star(Symb)))

ϵ|ab∗ ∼ Concat(Union(Null, Syma), Star(Symb))

Thus ∼ is a ‘many-many’ relation between strings and trees.

! Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying
r ∼ parse(r).

! Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying
pp(R) ∼ R.

(See CST IB Compiler construction course.)
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Matching

Each regular expression r over an alphabet Σ determines a
language L(r) ⊆ Σ∗. The strings u in L(r) are by
definition the ones that match r, where

! u matches the regular expression a (where a ∈ Σ) iff u = a

! u matches the regular expression ϵ iff u is the null string ε

! no string matches the regular expression ∅

! u matches r|s iff it either matches r, or it matches s

! u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching r and w matching s

! u matches r∗ iff either u = ε, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.
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Inductive definition of matching

U = Σ∗ × {regular expressions over Σ}

axioms:
(a, a) (ε, ϵ) (ε, r∗)

rules:

(u, r)

(u, r|s)

(u, s)

(u, r|s)

(v, r) (w, s)

(vw, rs)

(u, r) (v, r∗)

(uv, r∗)

abstract syntax trees

(No axiom/rule involves the empty regular expression ∅ – why?)
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Examples of matching

Assuming Σ = {a, b}, then:

! a|b is matched by each symbol in Σ

! b(a|b)∗ is matched by any string in Σ∗ that starts with a ‘b’

! ((a|b)(a|b))∗ is matched by any string of even length in Σ∗

! (a|b)∗(a|b)∗ is matched by any string in Σ∗

! (ε|a)(ε|b)|bb is matched by just the strings ε, a, b, ab, and bb

! ∅b|a is just matched by a
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Some questions

(a) Is there an algorithm which, given a string u and a
regular expression r, computes whether or not u
matches r?

(b) In formulating the definition of regular expressions,
have we missed out some practically useful notions of
pattern?

(c) Is there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(r) and L(s) are
equal sets?

(d) Is every language (subset of Σ∗) of the form L(r) for
some r?
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