Abstract Syntax Trees

Formal languages

An extensional view of what constitutes a formal language is that it is completely determined by the set of 'words in the dictionary':

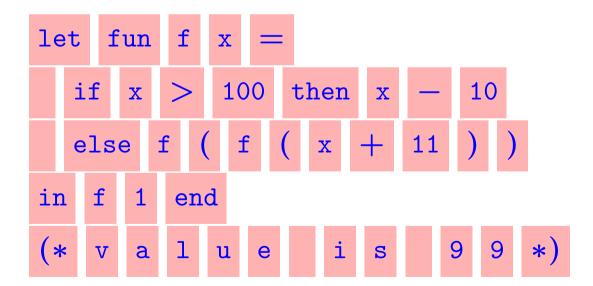
Given an alphabet Σ , we call any subset of Σ^* a (formal) language over the alphabet Σ .

L1 11

Concrete syntax: strings of symbols

- possibly including symbols to disambiguate the semantics (brackets, white space, etc),
- or that have no semantic content (e.g. syntax for comments).

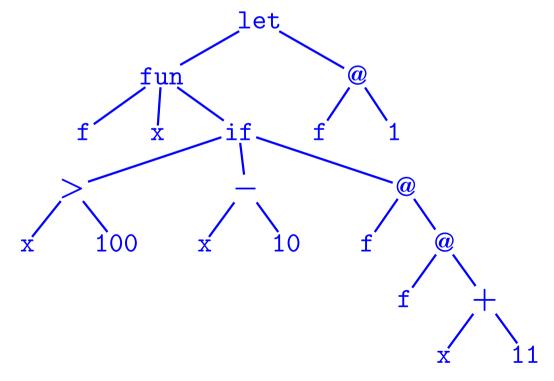
For example, an ML expression:



Abstract syntax: finite rooted trees

- vertexes with n children are labelled by operators expecting n arguments (n-ary operators) in particular leaves are labelled with 0-ary (nullary) operators (constants, variables, etc)
- ► label of the root gives the 'outermost form' of the whole phrase

E.g. for the ML expression on Slide 25:



Regular expressions (concrete syntax)

over a given alphabet Σ .

Let Σ' be the 4-element set $\{\epsilon, \emptyset, |, *\}$ (assumed disjoint from Σ)

```
U = (\Sigma \cup \Sigma')^* axioms: \frac{r}{a} = \frac{r}{\epsilon} = \frac{\sigma}{\sigma} rules: \frac{r}{(r)} = \frac{r}{r|s} = \frac{r}{rs} = \frac{r}{r^*} (where a \in \Sigma and r, s \in U)
```

Some derivations of regular expressions (assuming $a, b \in \Sigma$)

$\frac{a}{\epsilon} \frac{b}{b^*}$ $\frac{a}{ab^*}$ $\frac{\epsilon ab^* }{\epsilon ab^*}$	$\frac{\epsilon}{\frac{\epsilon a}{\epsilon ab^*}} \frac{b}{b^*}$	$\frac{a}{ab}$ $\frac{\epsilon}{ab^*}$ $\frac{\epsilon ab^*}{}$
$\frac{\frac{b}{b^*}}{\frac{a}{(b^*)}}$ $\frac{a}{a(b^*)}$ $\frac{\epsilon}{(a(b^*))}$	$ \frac{\epsilon a}{\epsilon \mid a} \frac{b}{b^*} \\ \frac{(\epsilon \mid a)}{(\epsilon \mid a)(b^*)} $	$\frac{a}{ab}$ $\frac{(ab)}{(ab)^*}$ $\frac{\epsilon}{\epsilon ((ab)^*)}$

Regular expressions (abstract syntax)

The 'signature' for regular expression abstract syntax trees (over an alphabet Σ) consists of

- binary operators *Union* and *Concat*
- unary operator Star
- ▶ nullary operators (constants) Null, Empty and Sym_a (one for each $a \in \Sigma$).

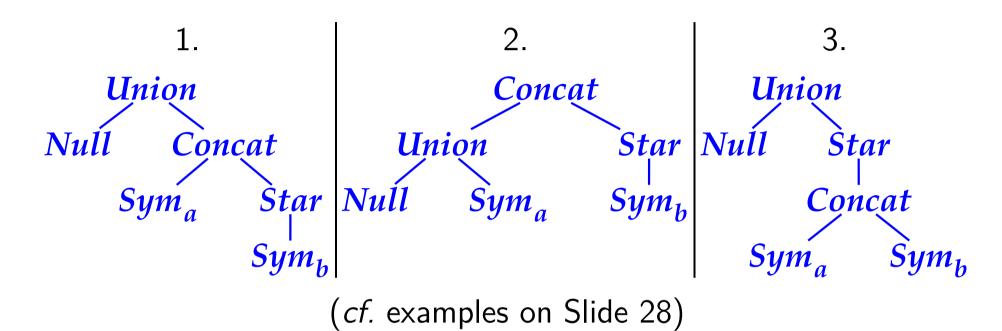
E.g. can parse concrete syntax $e|(a(b^*))$ as the abstract syntax tree delete)

Regular expressions (abstract syntax)

The 'signature' for regular expression abstract syntax trees (over an alphabet Σ) as an ML datatype declaration:

(the type $\frac{1}{2}$ a RE is parameterised by a type variable $\frac{1}{2}$ standing for the alphabet Σ)

Some abstract syntax trees of regular expressions (assuming $a, b \in \Sigma$)



We will use a textual representation of trees, for example:

- 1. Union(Null, Concat(Sym_a, Star(Sym_b)))
- 2. $Concat(Union(Null, Sym_a), Star(Sym_b))$
- 3. $Union(Null, Star(Concat(Sym_a, Sym_b)))$

Relating concrete and abstract syntax

for regular expressions over an alphabet Σ , via an inductively defined relation \sim between strings and trees:

L3

32

For example:

```
\epsilon|(a(b^*)) \sim Union(Null, Concat(Sym_a, Star(Sym_b)))
\epsilon|ab^* \sim Union(Null, Concat(Sym_a, Star(Sym_b)))
\epsilon|ab^* \sim Concat(Union(Null, Sym_a), Star(Sym_b))
```

Thus \sim is a 'many-many' relation between strings and trees.

- ▶ Parsing: algorithms for producing abstract syntax trees parse(r) from concrete syntax r, satisfying $r \sim parse(r)$.
- ▶ **Pretty printing:** algorithms for producing concrete syntax pp(R) from abstract syntax trees R, satisfying $pp(R) \sim R$.

(See CST IB Compiler construction course.)

13

LP34J Regular expression operator precedence Elab* means $\varepsilon | (a(b^*))$ Union (Null, Concat (Syma, Star (Symb))

[p34] Regular expression associativity Concatenation } one left associative

Egsabc stands for (ab)c alb/c " (alb)c

trom now on WE'LL USE ONCRETE SYNTAX OF REGULAR EXPRESSIONS TO REFER TO THEIR ABSTRACT SYNTAX, RELYING ON OPERATOR PRECEDENCE (KASSOCIATIVITY) CONVENTIONS TO AVOID AMBIGUITY

[p34] Regular expression associativity Concatenation } one left associative Less important than operator precidence because the meaning (semantics) of those is always associative.

Matching

Each regular expression r over an alphabet Σ determines a language $L(r) \subseteq \Sigma^*$. The strings u in L(r) are by definition the ones that **match** r, where

- ▶ u matches the regular expression a (where $a \in \Sigma$) iff u = a
- ightharpoonup matches the regular expression ϵ iff u is the null string ϵ
- no string matches the regular expression Ø
- $\triangleright u$ matches $r \mid s$ iff it either matches r, or it matches $s \mid s$
- ▶ u matches rs iff it can be expressed as the concatenation of two strings, u = vw, with v matching r and w matching s
- ▶ u matches r^* iff either $u = \varepsilon$, or u matches r, or u can be expressed as the concatenation of two or more strings, each of which matches r.

Inductive definition of matching

$$U = \Sigma^* \times \{\text{regular expressions over } \Sigma\}$$
axioms:
$$\frac{(a,a)}{(a,a)} \frac{(\varepsilon,\epsilon)}{(\varepsilon,r^*)}$$
rules:
$$\frac{(u,r)}{(u,r|s)} \frac{(u,s)}{(u,r|s)}$$

$$\frac{(v,r)}{(vw,rs)} \frac{(v,r)}{(vv,r^*)}$$

Examples of matching

Assuming $\Sigma = \{a, b\}$, then:

- ightharpoonup a b is matched by each symbol in Σ
- ▶ $b(a|b)^*$ is matched by any string in Σ^* that starts with a 'b'
- $((a|b)(a|b))^*$ is matched by any string of even length in Σ^*
- ▶ $(a|b)^*(a|b)^*$ is matched by any string in Σ^*
- \blacktriangleright $(\varepsilon|a)(\varepsilon|b)|bb$ is matched by just the strings ε , a, b, ab, and bb
- $ightharpoonup | oldsymbol{\emptyset} | oldsymbol{a} |$ is just matched by a

Some questions

- (a) Is there an algorithm which, given a string u and a regular expression r, computes whether or not u matches r?
- (b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?
- (c) Is there an algorithm which, given two regular expressions r and s, computes whether or not they are equivalent, in the sense that L(r) and L(s) are equal sets?
- (d) Is every language (subset of Σ^*) of the form L(r) for some r?