L3

Abstract Syntax Trees

L1

An extensional view of what constitutes a formal language is that it is
completely determined by the set of ‘words in the dictionary’:

Given an alphabet X, we call any subset of X* a (formal)
language over the alphabet X.

|

11

L3

Concrete syntax: strings of symbols

» possibly including symbols to disambiguate the semantics
(brackets, white space, etc),

» or that have no semantic content (e.g. syntax for comments).

For example, an ML expression:

let fun f x =
if x > 100 themn x — 10
else £ (£ (. x 4+ 11))
in £ 1 end

(* v a 1 u e i s 9 9 x)

25

Abstract syntax: finite rooted trees

» vertexes with n children are labelled by operators expecting n

arguments (n-ary operators) — in particular leaves are labelled
with 0-ary (nullary) operators (constants, variables, etc)

» label of the root gives the ‘outermost form’ of the whole phrase

let
E.g. for the ML expression / \

on Slide 25: fun @

A NVAN

/ N\ / N\

@
\
X 100 X 10 f @
/ \
f —+

/\

X 11

L3 26

Regular expressions (concrete syntax)

over a given alphabet L.

Let X/ be the 4-element set {€, @, |, *} (assumed disjoint from X)

U= (ZUur')*

axioms:

a € D

| r s r s r
rules: — —
(r) r|s rs r

(where a € X and r,s € U)

L3

Some derivations of regular expressions

(assuming a,b € X)

b a b
a b* € a b ab
ab™ €la b* | e ab™
e|ab™ e|ab™ €|ab™
b a b
b* ab
a (b*) | € a b (ab)
a(b™) €|a b* (ab)*
(a(b”)) (e]a) (b*) | e ((ab)™)
e[(a(b™)) (e]a)(b™) e[((ab)™)

28

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X.) consists of

» binary operators Union and Concat
> unary operator Star

> nullary operators (constants) Null, Empty and Sym
(one for each a € X).

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ /\I/ﬂ/'ﬁ*\\ -~ o~ -I-L\A —\L\n

h-c- A I rluluv w1 1wl W UJII\‘“I\ vl\v

gowh)

L3 29

Regular expressions (abstract syntax)

The ‘signature’ for regular expression abstract syntax trees
(over an alphabet X) as an ML datatype declaration:

datatype ’aRE = Union of ("aRE) * ("aRE)
Concat of (aRE) * ("aRE)
Star of 'aRE

Null

Empty

Sym of 'a

(the type ’aRE is parameterised by a type variable “a standing for the alphabet X)

L3 30

Some abstract syntax trees of regular expressions

(assuming a,b € X)

1. 2.
Union Concat
AN , N
Null Concat Union Star
RN /7 |
Sym Stlar Null Sym_, Sym,
Sym,

(cf. examples on Slide 28)

3.
Union
/.

Null Stlar

Concat

Sym Sym,

a

We will use a textual representation of trees, for example:

1. Union(Null, Concat(Sym , Star(Sym,)))
2. Concat(Union(Null, Sym), Star(Sym,))
3. Union(Null, Star(Concat(Sym , Sym,)))

L3

31

Relating concrete and abstract syntax

for regular expressions over an alphabet X, via an
inductively defined relation ~ between strings and trees:

a ~ Sym, e ~ Null @ ~ Empty
r~ R r~ R s~ S
(r) ~R r|s ~ Union(R,S)
r~ R s~ S r ~ R

rs ~ Concat(R,S) r* ~ Star(R)

For example:

e|(a(b®)) ~ Union(Null, Concat(Sym_, Star(Sym,)))
e|ab™ ~ Union(Null, Concat(Sym , Star(Sym,)))
€lab™ ~ Concat(Union(Null, Sym), Star(Sym,))

Thus ~ is a ‘'many-many’ relation between strings and trees.

» Parsing: algorithms for producing abstract syntax
trees parse(r) from concrete syntax r, satisfying

r ~ parse(r).
» Pretty printing: algorithms for producing concrete
syntax pp(R) from abstract syntax trees R, satisfying

pp(R) ~ R. /

(See CST IB Compiler construction course.)

L3 33

froMm Now 6N WE'LL ©S

-t

—

ANCRETE SYNTAX 6F REMLAR

Expressiovs T REFER To THEW
ABSTRACT SYNTAX, RELYING OV

SPER NTor PREcE DencE (KASSDUATVITY)
CONVVENTIONS T AVon AMB &\ TY

Lop3y]

R%M xS Yoy o«Ssoc/Iodn\n'\'B/
%omcﬁ?ﬂ\mﬁm }m W assouative
'O

Less impoftamk tham apervter prcdonce
hecomse fina W\sz{v\? (Sevmvxhcg)c)f

Cdnase g a&woww I S

L3

Each regular expression r over an alphabet X determines a
language L(r) C X*. The strings u in L(r) are by
definition the ones that match r, where

>

>

u matches the regular expression a (where a € L) iff u = a
u matches the regular expression € iff u is the null string &
no string matches the regular expression @

1 matches r|s iff it either matches 7, or it matches s

u matches rs iff it can be expressed as the concatenation of two
strings, u = vw, with v matching » and w matching s

u# matches ™ iff either u = &, or u matches r, or u can be
expressed as the concatenation of two or more strings, each of
which matches r.

35

L3

Inductive definition of matching

U = X* X {regular expressions over L}

abstract syntax trees

axlior.ns: (a, a) (8’ e) (e, r*)
(u,r) (u,s)
(u,[s) (u,r[s)
(v,7) (w,s) (u,r) (v, 1)
(ow, rs) (uv, r™)

(No axiom/rule involves the empty regular expression @ — why?)

L3

Examples of matching

Assuming £ = {a, b}, then:

>

>

a|b is matched by each symbol in &

b(a|b)* is matched by any string in £* that starts with a ‘b’

((a|lb)(a|b))* is matched by any string of even length in X*
(a|b)* (a|b)™* is matched by any string in X*
(e|a)(e|b) |bb is matched by just the strings €, a, b, ab, and bb

@b|a is just matched by a

37

(a)

L3

Is there an algorithm which, given a string u and a
regular expression ¥, computes whether or not u
matches 77

n formulating the definition of regular expressions,
nave we missed out some practically useful notions of
pattern?

s there an algorithm which, given two regular
expressions r and s, computes whether or not they are
equivalent, in the sense that L(7) and L(s) are
equal sets?

s every language (subset of X*) of the form L(r) for
some 1’

38

