
Formal Languages and Automata

7 lectures for
2014 CST Part IA Discrete Mathematics

by Prof. Andrew Pitts

c⃝ 2014 AM Pitts

L1 1



Syllabus for this part of the course

! Inductive definitions using rules
and proofs by rule induction.

! Abstract syntax trees.
! Regular expressions and pattern matching.
! Finite automata and regular languages:

Kleene’s theorem.
! The Pumping Lemma.

L1 3



Common theme: mathematical techniques for defining
formal languages and reasoning about their properties.

Key concepts: inductive definitions, automata

Relevant to:

Part IB Compiler Construction, Computation Theory, Complexity
Theory, Semantics of Programming Languages

Part II Natural Language Processing, Optimising Compilers,
Denotational Semantics, Temporal Logic and Model
Checking

N.B. we do not cover the important topic of context-free grammars, which prior to 2013/14 was
part of the CST IA course Regular Languages and Finite Automata that has been subsumed into
this course.

L1 4



Formal Languages

L1 5



Alphabets
An alphabet is specified by giving a finite set, Σ, whose
elements are called symbols. For us, any set qualifies as a
possible alphabet, so long as it is finite.

Examples:

! {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, 10-element set of decimal digits.

! {a, b, c, . . . , x, y, z}, 26-element set of lower-case characters of
the English language.

! {S | S ⊆ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}}, 210-element set of all
subsets of the alphabet of decimal digits.

Non-example:

! N = {0, 1, 2, 3, . . .}, set of all non-negative whole numbers is
not an alphabet, because it is infinite.

L1 6



Strings over an alphabet
A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ∗ denotes set of all strings over Σ of any finite length.

Examples:

! If Σ = {a, b, c}, then ε,

notation for the
string of length 0

a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

! If Σ = {a}, then Σ∗ contains ε, a, aa, aaa, aaaa,
etc.

In general, an denotes the string of length n just containing a symbols

L1 7



Strings over an alphabet
A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ∗ denotes set of all strings over Σ of any finite length.

Examples:

! If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

! If Σ = {a}, then Σ∗ contains ε, a, aa, aaa, aaaa,
etc.

! If Σ = ∅ (the empty set), then what is Σ∗?
L1 7



Strings over an alphabet
A string of length n (for n = 0, 1, 2, . . .) over an
alphabet Σ is just an ordered n-tuple of elements of Σ,
written without punctuation.

Σ∗ denotes set of all strings over Σ of any finite length.

Examples:

! If Σ = {a, b, c}, then ε, a, ab, aac, and bbac are
strings over Σ of lengths zero, one, two, three and four
respectively.

! If Σ = {a}, then Σ∗ contains ε, a, aa, aaa, aaaa,
etc.

! If Σ = ∅ (the empty set), then Σ∗ = {ε}.
L1 7



Concatenation of strings
The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ∗ are u = ab, v = ra and
w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra

L1 9



Concatenation of strings
The concatenation of two strings u and v is the string uv
obtained by joining the strings end-to-end. This generalises
to the concatenation of three or more strings.

Examples:

If Σ = {a, b, c, . . . , z} and u, v, w ∈ Σ∗ are u = ab, v = ra and
w = cad, then

vu = raab

uu = abab

wv = cadra

uvwuv = abracadabra

L1 9



Formal languages

An extensional view of what constitutes a formal language is that it is

completely determined by the set of ‘words in the dictionary’:

Given an alphabet Σ, we call any subset of Σ∗ a (formal)
language over the alphabet Σ.

We will use inductive definitions to describe languages in terms of

grammatical rules for generating subsets of Σ∗.

L1 11



Inductive Definitions

L1 12



Axioms and rules
for inductively defining a subset of a given set U

! axioms
a

are specified by giving an element a of U

! rules
h1 h2 · · · hn

c
are specified by giving a finite subset {h1, h2, . . . , hn} of U (the

hypotheses of the rule) and an element c of U (the conclusion

of the rule)

L1 13



Derivations
Given a set of axioms and rules for inductively defining a
subset of a given set U, a derivation (or proof) that a
particular element u ∈ U is in the subset is by definition

a finite rooted tree with vertexes labelled by
elements of U and such that:

! the root of the tree is u (the conclusion of
the whole derivation),

! each vertex of the tree is the conclusion of a
rule whose hypotheses are the children of the
node,

! each leaf of the tree is an axiom.

L1 14



Example

U = {a, b}∗

axiom:
ε

rules:
u

aub

u

bua

u v

uv
(for all u, v ∈ U)

Example derivations:

ε

ab

ε

ab

aabb

abaabb

ε

ba

ε

ab

baab

abaabb

L1 15



Inductively defined subsets
Given a set of axioms and rules over a set U, the subset of
U inductively defined by the axioms and rules consists of
all and only the elements u ∈ U for which there is a
derivation with conclusion u.

For example, for the axioms and rules on Slide 15

! abaabb is in the subset they inductively define (as witnessed by
either derivation on that slide)

! abaab is not in that subset (there is no derivation with that
conclusion – why?)

(In fact u ∈ {a, b}∗ is in the subset iff it contains the same number of a and b symbols.)

L1 16



Example: transitive closure
Given a binary relation R ⊆ X × X on a set X, its
transitive closure R+ is the smallest (for subset
inclusion) binary relation on X which contains R and which
is transitive (∀x, y, z ∈ X. (x, y) ∈ R+ & (y, z) ∈ R+ ⇒ (x, z) ∈ R+).

R+ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

L1 18



Example: reflexive-transitive closure
Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

L2 19



Example: reflexive-transitive closure
Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 20) to prove this

L2 19



Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

Given axioms and rules for inductively defining a subset of a set U, we
say that a subset S ⊆ U is closed under the axioms and rules if

! for every axiom
a

, it is the case that a ∈ S

! for every rule
h1 h2 · · · hn

c
, if h1, h2, . . . , hn ∈ S, then c ∈ S.

L2 20



Rule Induction
Theorem. The subset I ⊆ U inductively defined by a
collection of axioms and rules is closed under them and is
the least such subset: if S ⊆ U is also closed under the
axioms and rules, then I ⊆ S.

We use the theorem as method of proof: given a property P(u) of
elements of U, to prove ∀u ∈ I. P(u) it suffices to show

! base cases: P(a) holds for each axiom
a

! induction steps: P(h1) & P(h2) & · · · & P(hn)⇒ P(c)

holds for each rule
h1 h2 · · · hn

c

(To see this, apply the theorem with S = {u ∈ U | P(u)}.)

L2 20



Example: reflexive-transitive closure
Given a binary relation R ⊆ X × X on a set X, its
reflexive-transitive closure R∗ is defined to be the
smallest binary relation on X which contains R, is both
transitive and reflexive (∀x ∈ X. (x, x) ∈ R∗).

R∗ is equal to the subset of X × X inductively defined by

axioms
(x, y)

(for all (x, y) ∈ R)
(x, x)

(for all x ∈ X)

rules
(x, y) (y, z)

(x, z)
(for all x, y, z ∈ X)

we can use Rule Induction (Slide 20) to prove this, since
S ⊆ X × X being closed under the axioms & rules is the same

as it containing R, being reflexive and being transitive.
L2 22


