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Workout 1
from page 45

NB The main aim here is for you to practice the analysis and

understanding of mathematical statements (e.g. by isolating the

different components of composite statements), and exercise the

art of presenting a logical argument in the form of a clear proof

(e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. The product of two even natural numbers is even.

2. The product of an even and an odd natural number is odd.

3. If x > 3 and y < 2 then x2 − 2 · y > 5.
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Workout 2
from page 52

NB The main aim here is for you to practice the analysis and

understanding of mathematical statements (e.g. by isolating the

different components of composite statements), and exercise the

art of presenting a logical argument in the form of a clear proof

(e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. Suppose n is a natural number larger than 2, and n is not a
prime number. Then 2 · n + 13 is not a prime number.

2. If x2 + y = 13 and y 6= 4 then x 6= 3.
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Workout 3
from page 63

1. Characterise those integers d and n such that:

(a) 0 | n,

(b) d | 0.

2. Write an ML function

divides: int * int -> bool

such that, for all integers m and n, divides(m,n) = true iff
m | n holds.
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You may use div, but note that the function

fn (m,n) => ( n div m ) = 0

will not do.

3. Let n be a natural number. Show that n | n.
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Workout 4
from page 66

1. Let i, j be integers and let m be a positive integer. Show that:

(a) i ≡ i (mod m)

(b) i ≡ j (mod m) =⇒ j ≡ i (mod m)

(c) i ≡ j (mod m) =⇒ i2 ≡ j2 (mod m)

2. Find integers i, j, natural numbers k, l, and a positive integer
m for which both i ≡ j (mod m) and k ≡ l (mod m) hold while
ik ≡ jl (mod m) does not.
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3. Find an integer i, natural numbers k, l, and a positive integer m
for which k ≡ l (mod m) holds while ik ≡ il (mod m) does not.

4. Formalise and prove the following statement: A natural number
is a multiple of 3 iff so is the number obtained by summing its
digits. What about multiples of 9? And multiples of 11?
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Workout 5
from page 68

NB The main aim here is for you to practice the analysis and

understanding of mathematical statements (e.g. by isolating the

different components of composite statements), and exercise the

art of presenting a logical argument in the form of a clear proof

(e.g. by following proof strategies and patterns).

1. Prove or disprove that, for an integer n, n2 is even if and only if
n is even.
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2. Show that for all integers d and n the following statements are
equivalent:

(a) d | n.

(b) −d | n.

(c) d | −n.

(d) −d | −n.

3. Let k, m, n be integers with k positive. Show that:

(k ·m) | (k · n) ⇐⇒ m | n .
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Workout 6
from page 77

NB The main aim here is for you to practice the analysis and

understanding of mathematical statements (e.g. by isolating the

different components of composite statements), and exercise the

art of presenting a logical argument in the form of a clear proof

(e.g. by following proof strategies and patterns).

1. Prove or disprove the following statements.

(a) For real numbers a and b, if 0 < a < b then a2 < b2.

(b) For real numbers a, b, and c with a > b, if a · c ≤ b · c then
c ≥ 0.

2. Prove or disprove that for all natural numbers n, 2 | 2n.
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3. Let P(m) be a statement for m ranging over the natural
numbers, and consider the derived statement

P#(m) = ∀ integer k. 0 ≤ k ≤ m =⇒ P(k)

again for m ranging over the natural numbers.

Prove the following equivalences:

◮ P#(0) ⇐⇒ P(0)

◮
(

P#(n) =⇒ P#(n+ 1)
)

⇐⇒
(

P#(n) =⇒ P(n+ 1)
)

◮ ∀ natural number m.P#(m)
⇐⇒

∀ natural number m.P(m)
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Workout 7
from page 85

1. Taking inspiration from the proof of Theorem 20 (on page 83),
or otherwise, prove that for all integers n,

30 | n ⇐⇒
(

2 | n & 3 | n & 5 | n
)

.

Can you spot a pattern here? Can you formalise it, test it, and
prove it?

2. Find a counterexample to the statement: For all positive integers
k, m, n, if m | k & n | k then (m · n) | k.
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3. Show that for all integers l, m, n,

l | m & m | n =⇒ l | n .

4. Prove that for all integers d, k, l, m, n,

(a) d | m & d | n =⇒ d | (m + n),

(b) d | m =⇒ d | k ·m,

(c) d | m & d | n =⇒ d | (k ·m+ l · n).

5. Prove that for all integers i, j, k, l, m, n with m positive and n

nonnegative,

(a) i ≡ j (mod m) & j ≡ k (mod m) =⇒ i ≡ k (mod m)

(b) i ≡ j (mod m) & k ≡ l (mod m) =⇒ i+ k ≡ j+ l (mod m)

(c) i ≡ j (mod m) & k ≡ l (mod m) =⇒ i · k ≡ j · l (mod m)

(d) i ≡ j (mod m) =⇒ in ≡ jn (mod m)
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Workout 8
from page 99

NB The main aim here is for you to practice the analysis and

understanding of mathematical statements (e.g. by isolating the

different components of composite statements), and exercise the

art of presenting a logical argument in the form of a clear proof

(e.g. by following proof strategies and patterns).

Prove or disprove the following statements.

1. For every real number x, if x > 0 then there is a real number y
such that y(y+ 1) = x.

2. For all real numbers x and y there is a real number z such that
x+ z = y− z.
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3. For all integers x and y there is an integer z such that x + z =

y− z.

4. For every real number x, if x 6= 2 then there is a unique real
number y such that 2y/(y+ 1) = x.

5. The addition of two rational numbers is a rational number.

6. Prove that for all natural numbers p, p1, p2,

(a) min(p, p1 + p2) = min
(

p,min(p, p1) +min(p, p2)
)

, and

(b) min(p, p1 + p2) = min(p, p1) +min
(

p−min(p, p1), p2

)

.
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Workout 9
from page 106

NB The main aim here is for you to practice the analysis and

understanding of mathematical statements (e.g. by isolating the

different components of composite statements), and exercise the

art of presenting a logical argument in the form of a clear proof

(e.g. by following proof strategies and patterns).

1. Prove or disprove that for integers m and n, if m ·n is even, then
either m is even or n is even.
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2. If every pair of people in a group has met, then we will call the
group a club. If every pair of people in a group has not met,
then we will call it a group of strangers.

Prove that every collection of 6 people includes a club of 3
people or a group of 3 strangers.

3. Show that for all integers m and n,

m | n & n | m =⇒ m = n ∨ m = −n .

4. Prove or disprove that for all positive integers k, m, n,

if k | (m · n) then k | m or k | n .

5. Prove that for all integers n, there exist natural numbers i and j

such that n = i2 − j2 iff either n ≡ 0 (mod 4), or n ≡ 1 (mod 4),
or n ≡ 3 (mod 4). [Hint: Recall Proposition 22 (on page 91).]
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Workout 10
from page 127

1. Search for “Fermat’s Little Theorem” in YouTube and watch a
video or two about it.

2. Let i and n be positive integers and let p be a prime. Show that
if n ≡ 1 (mod p−1) then in ≡ i (mod p) for all i not multiple of p.
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Workout 11
from page 130

Justify the boolean equivalences:

¬
(

P =⇒ Q
)

⇐⇒ P & ¬Q

¬
(

P ⇐⇒ Q
)

⇐⇒ P ⇐⇒ ¬Q

¬
(

P & Q
)

⇐⇒ (¬P) ∨ (¬Q)

¬
(

P ∨ Q
)

⇐⇒ (¬P) & (¬Q)

¬
(

¬P
)

⇐⇒ P

¬P ⇐⇒ (P ⇒ false)

(P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P)

(false =⇒ P) ⇐⇒ true
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(

P1 =⇒ (P2 =⇒ Q)
)

⇐⇒
(

(P1 & P2) =⇒ Q
)

(P ⇐⇒ Q) ⇐⇒
(

(P =⇒ Q) & (Q =⇒ P)
)

by means of truth tables, where the truth tables for the boolean
statements are:

P Q P =⇒ Q P ⇐⇒ Q P & Q P ∨ Q ¬P

true true true true true true false

false true true false false true true

true false false false false true

false false true true false false
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Workout 12
from page 143

Give three justifications for the following scratch work:

Before using the strategy

Assumptions Goal

P =⇒ Q
...

After using the strategy

Assumptions Goal

contradiction
...

P , ¬Q
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Workout 13
from page 171

1. Show that for every integer n, the remainder when n2 is divided
by 4 is either 0 or 1.

2. Write the division algorithm in imperative code.

3. Prove that for all natural numbers k, l, and positive integer m,

(a) rem(k+ l,m) = rem
(

k+ rem(l,m),m
)

, and

(b) rem(k · l,m) = rem
(

k · rem(l,m),m
)

.

4. Prove the following Linearity Property of the Division Algorithm:
for all positive integers k, m, n,

divalg(k ·m,k · n) =
(

quo(m,n), k · rem(m,n)
)

.
— 472 —



Version of March 6, 2014

5. Prove the General Division Theorem for integers:

For every integer m and non-zero integer n, there exists
a unique pair of integers q and r such that 0 ≤ r < |n|,
and m = q · n+ r.

6. Prove that for all positive integers m and n,

(a) n < m =⇒ quo(n,m) = 0 & rem(n,m) = n, and

(b) n ≤ m =⇒ rem(m,n) < m/2.
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Workout 14
from page 178

1. Calculate that 2153 ≡ 53 (mod 153).

Btw, at first sight this seems to contradict Fermat’s Little
Theorem, why isn’t this the case though?

2. Let m be a positive integer.

(a) Prove the associativity of the addition and multiplication
operations in Zm; that is, that for all i, j, k in Zm,

(i+m j) +m k = i+m (j+m k) , and
(i ·m j) ·m k = i ·m (j ·m k) .

[Hint: Use Workout 13.3 on page 472.]
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(b) Prove that the additive inverse of k in Zm is [−k]m.

3. Calculate the addition and multiplication tables, and the
additive and multiplicative inverses tables for Z3, Z6, and Z7.
Can you spot any patterns?
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Workout 15
from page 215

1. Write Euclid’s Algorithm in imperative code.

2. Calculate the set CD(666, 330) of common divisors of 666 and
330.

3. Show that for all integers k, the conjuction of the two
statements

◮ k | m & k | n, and
◮ for all positive integers d, d | m & d | n =⇒ d | k

is equivalent to the single statement

for all positive integers d, d | m & d | n ⇐⇒ d | k .
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4. Prove that for all positive integers m and n,

gcd(m,n) = m ⇐⇒ m | n .

5. Prove that, for all positive integers m and n, and integers k and
l,

gcd(m,n) | (k ·m + l · n) .

6. Prove that, for all positive integers m and n, there exist integers
k and l such that k ·m+ l · n = 1 iff gcd(m,n) = 1.

— 477 —



Version of March 6, 2014

7. For all positive integers m and n, define

m ′ = m
gcd(m,n)

and n ′ = n
gcd(m,n)

.

Prove that

(a) m ′ and n ′ are positive integers, and that

(b) gcd(m ′, n ′) = 1.

Conclude that the representation in lowest terms of the fraction
m/n is m ′/n ′.
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8. Use the Key Lemma 56 (on page 189) to show the
correctness of the following algorithm

fun gcd0( m , n )

= if m = n then m

else

let

val p = min(m,n) ; val q = max(m,n)

in

gcd0( p , q - p )

end

for computing the gcd of two positive integers. Give an analysis
of the time complexity.
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Workout 16
from page 221

1. Revisit Theorem 20 (on page 83) and Workout 7.1 (on
page 462) using Euclid’s Theorem (Corollary 64 on page 64) to
give new proofs for them. Can you now state and prove a
general result from which these follow?

— 480 —



Version of March 6, 2014

Workout 17
from page 235

1. Write the Extended Euclid’s Algorithm in imperative code.

2. Prove Theorem 68 (on page 226).

3. Let m and n be positive integers with gcd(m,n) = 1. Prove that
for every natural number k,

m | k & n | k =⇒ (m · n) | k .
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4. Prove that for all positive integers l, m, and n, if
gcd(l,m · n) = 1 then gcd(l,m) = 1 and gcd(l, n) = 1.

5. Prove that for all integers n and primes p, if n2 ≡ 1 (mod p)
then either n ≡ 1 (mod p) or n ≡ −1 (mod p).

6. (a) Show that the gcd of two linear combinations of positive
integers m and n is itself a linear combination of m and n.

(b) Argue that the output
(

(s, t), r
)

of calling egcditer with input
(

(

(s1, t1) , s1 ·m+ t1 · n
)

,
(

(s2, t2) , s2 ·m + t2 · n
)

)

is such that

gcd
(

s1 ·m+ t1 · n , s2 ·m+ t2 · n
)

= r = s ·m+ t · n .
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Workout 18
from page 240

1. Search for “Diffie-Hellman Key Exchange” in YouTube and
watch a video or two about it.
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Workout 19
from page 259

1. State the Principle of Induction for the ML

datatype

N = zero | succ of N

2. Establish the following:

(a) For all positive integers m and n,

(2n − 1) ·∑m−1
i=0 2i·n = 2m·n − 1 .

(b) Suppose k is a positive integer that is not prime. Then
2k − 1 is not prime.
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3. Recall that the Fibonacci numbers Fn for n ranging over the
natural numbers are defined by F0 = F1 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2.

(a) Prove that gcd(Fn+1, Fn) terminates in n+ 1 steps for all
natural numbers n.

(b) Prove that for all natural numbers n,

Fn · Fn+2 = Fn+1
2 + (−1)n .
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Workout 20
from page 283

1. Equation (⋆) on page 282 gives a Transfer Principle of additive
properties of min as multiplicative properties of gcd. To see this,
prove that for all positive integers m, m1, m2,

(a) gcd(m,m1 ·m2) = gcd
(

m, gcd(m,m1) · gcd(m,m2)
)

, and

(b) gcd(m,m1 ·m2) = gcd(m,m1) · gcd
(

m
gcd(m,m1)

,m2

)

.

[Hint: Use Workout 8.6 on page 465.]
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2. Give two proofs of the following proposition

For all positive integers m, n, p, q such that
gcd(m,n) = gcd(p, q) = 1, if m · q = p · n then
m = p and n = q.

respectively using Theorem 63 and Equation (⋆) on page 282.
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Workout 21
from page 296

1. Write an ML function

subset: ’’a list * ’’a list -> bool

such that for every list xs representing a finite set X and every
list ys representing a finite set Y, subset(xs,ys)=true iff X ⊆ Y.

2. Prove the following statements:

(a) ∀ sets A.A ⊆ A.

(b) ∀ sets A,B,C. (A ⊆ B & B ⊆ C) =⇒ A ⊆ C.

(c) ∀ sets A. (A ⊆ B & B ⊆ A) ⇐⇒ A = B.
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Workout 22
from page 301

Prove the following statements:

1. ∀ set S. ∅ ⊆ S.

2. ∀ set S. (∀x. x 6∈ S) ⇐⇒ S = ∅.

— 489 —



Version of March 6, 2014

Workout 23
from page 313

1. Referring to the definitions on pages 186 and 187, show that
CD(m,n) = D(m) ∩D(n).

2. Find the union and intersection of:

(a) {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7};

(b) {x ∈ R | x > 7} and {x ∈ N | x > 5}.
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3. Write ML functions

union: ’a list * ’a list -> ’a list

intersection: ’’a list * ’’a list -> ’a list

such that for every list xs representing a finite set X and every
list ys representing a finite set Y, the lists union(xs,ys) and
intersection(xs,ys) respectively represent the finite sets X∪Y
and X ∩ Y.

Use these functions to check your answer to the first part of the
previous item.

4. Give an explicit description of P
(

P(P(∅))
)

, and draw its Hasse
diagram.
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5. Write an ML function

powerset: ’a list -> ’a list list

such that for every list as representing a finite set A, the list of
lists powerset(as) represents the finite set P(A).

6. Establish the laws of the powerset Boolean algebra.

7. Either prove or disprove that, for all sets A and B,

(a) A ⊆ B =⇒ P(A) ⊆ P(B),

(b) P(A ∪ B) ⊆ P(A) ∪ P(B),

(c) P(A) ∪ P(B) ⊆ P(A ∪ B).

(d) P(A ∩ B) ⊆ P(A) ∩ P(B),

(e) P(A) ∩ P(B) ⊆ P(A ∩ B).
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8. Let U be a set. For all A,B ∈ P(U) prove that the following
statements are equivalent.

(a) A ∪ B = B.

(b) A ⊆ B.

(c) A ∩ B = A.

(d) Bc ⊆ Ac.

9. Let U be a set. For all A,B ∈ P(U) prove that

(a) Ac = B ⇐⇒ (A ∪ B = U & A ∩ B = ∅),
(b) (Ac)c = A, and

(c) the De Morgan’s laws:

(A ∪ B)c = Ac ∩ Bc and (A ∩ B)c = Ac ∪ Bc .
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10. Draw Venn diagrams for the following constructions on sets.

(a) Difference:

A \ B = { x ∈ A | x 6∈ B }

(b) Symmetric difference:

A △ B = (A \ B) ∪ (B \A)
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If you like this kind of stuff, push on.

11. Let U be a set. Prove that, for all A,B ∈ P(U),

(a) A ⊆ B =⇒
(

A \ B = ∅ & A △ B = B \A
)

.

(b) A ∩ B = ∅ =⇒ A △ B = A ∪ B,

(c) (A △ B) ∩ (A ∩ B) = ∅ & (A △ B) ∪ (A ∩ B) = A ∪ B,

and establish as corollaries that

(d) Ac = U △ A.

(e) A ∪ B = (A △ B) △ (A ∩ B),

thereby expressing complements and unions in terms of
symmetric difference and intersections.
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12. The purpose of this exercise is to show that, for a set U, the
structure

(

P(U), ∅,△, U,∩
)

is a commutative ring.

(a) Prove that (P(U), ∅,△) is a commutative group; that is, a
commutative monoid (refer to page 154) in which every
element has an inverse (refer to page 159).

(b) Prove that P(U) with additive structure (∅,△) and
multiplicative structure (U,∩) is a commutative semiring.
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Workout 24
from page 322

1. Find the product of {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7}.

2. Write an ML function

product: ’a list * ’b list -> ( ’a * ’b ) list

such that for every list as representing a finite set A and every
list bs representing a finite set B, the list of pairs
product(as,bs) represents the product set A× B.

Use this function to check your answer to the previous item.
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3. For sets A,B,C,D, either prove or disprove the following
statements.

(a) (A ⊆ B & C ⊆ D) =⇒ A× C ⊆ B×D.

(b) (A ∪ C)× (B ∪D) ⊆ (A× B) ∪ (C×D).

(c) (A× B) ∪ (C×D) ⊆ (A ∪ C)× (B ∪D).

(d) A× (B ∪D) ⊆ (A× B) ∪ (A×D).

(e) (A× B) ∪ (A×D) ⊆ A× (B ∪D).

What happens with the above when A ∩ C = ∅ and/or
B ∩D = ∅?
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Workout 25
from page 334

1. Let I = {2, 3, 4, 5}, and for each i ∈ I let Ai = {i, i+ 1, i− 1, 2 · i}.
(a) List the elements of all the sets Ai for i ∈ I.

(b) Let
{
Ai | i ∈ I

}
stand for

{
A2, A3, A4, A5

}
.

Find
⋃

{Ai | i ∈ I} and
⋂

{Ai | i ∈ I}.
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2. Write ML functions

bigunion: ’a list list -> ’a list

bigintersection: ’a list list -> ’a list

such that for every list of lists as representing a finite set of
finite sets A, the lists bigunion(as) and bigintersection(as)

respectively represent the finite sets
⋃

X and
⋂

X.

Use these functions to check your answer to the previous item.

3. For F ⊆ P(A), let U =
{
X ⊆ A | ∀S ∈ F. S ⊆ X

}
⊆ P(A).

Prove that
⋃

F =
⋂

U.

Analogously, define L ⊆ P(A) such that
⋂

F =
⋃

L. Also
prove this statement.
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NB For intuition when tackling the following exercises it might

help considering the case of finite collections first.

4. Prove that, for all collections F, it holds that

∀ set U.
⋃

F ⊆ U ⇐⇒
(

∀X ∈ F. X ⊆ U
)

.

State and prove the analogous property for intersections of big
intersections of non-empty collections.

5. Prove that for all collections F1 and F2,
(
⋃

F1

)

∪
(
⋃

F2

)

=
⋃

(F1 ∪ F2) .

State and prove the analogous property for intersections of
non-empty collections.
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Workout 26
from page 339

1. Find the disjoint union of {1, 2, 3, 4, 5} and {−1, 1, 3, 5, 7}.

2. Let

datatype (’a,’b) sum = one of ’a | two of ’b .

Write an ML function

dunion: ’a list * ’b list -> (’a ,’b) sum list

such that for every list as representing a finite set A and every
list bs representing a finite set B, the list of tagged elements
dunion(as,bs) represents the disjoint union A ⊎ B.

Use this function to check your answer to the previous item.
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3. Prove or disprove the following statements for all sets A, B, C,
D:

(a) (A ⊆ B & C ⊆ D) =⇒ A ⊎ C ⊆ B ⊎D,

(b) (A ∪ B) ⊎ C ⊆ (A ⊎ C) ∪ (B ⊎ C),

(c) (A ⊎ C) ∪ (B ⊎ C) ⊆ (A ∪ B) ⊎ C,

(d) (A ∩ B) ⊎ C ⊆ (A ⊎ C) ∩ (B ⊎ C),

(e) (A ⊎ C) ∩ (B ⊎ C) ⊆ (A ∩ B) ⊎ C.
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Workout 27
from page 363

1. Let A = {1, 2, 3, 4} and B = {a, b, c, d}, and C = {x, y, z}. Let
R =
{
(1, a), (2, d), (3, a), (3, b), (3, d)

}
: A−→p B and

S =
{
(b, x), (b, x), (c, y), (d, z)

}
: B−→p C. What is their

composition S ◦ R : A−→p C?

2. Prove Theorem 96 (on page 347).
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3. For a relation R : A−→p B, let its opposite, or dual , Rop : B−→p A

be defined by

bRop a ⇐⇒ aRb .

For R, S : A−→p B, prove that

(a) R ⊆ S =⇒ Rop ⊆ Sop.

(b) (R ∩ S)op = Rop ∩ Sop.

(c) (R ∪ S)op = Rop ∪ Sop.

4. Show that in a directed graph on a finite set with cardinality n

there is a path between two nodes iff there is a path of length
n− 1.
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Workout 28
from page 368

1. For a relation R on a set A, prove that R is antisymmetric iff
R ∩ Rop ⊆ IA.

2. Let F ⊆ P(A× B) be a collection of relations from A to B.
Prove that,

(a) for all R : X−→p A,
(
⋃

F
)

◦ R =
⋃
{
S ◦ R | S ∈ F

}
: X−→p B ,

and that,

(b) for all R : B−→p Y,

R ◦
(
⋃

F
)

=
⋃
{
R ◦ S | S ∈ F

}
: A−→p Y .

What happens in the case of big intersections?
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3. For a relation R on a set A, let

TR =
{
Q ⊆ A×A | R ⊆ Q & Q is transitive

}
.

For R◦+ = R ◦ R◦∗, prove that (i) R◦+ ∈ TR and (ii) R◦+ ⊆ ⋂

TR.
Hence, R◦+ =

⋂

TR.
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Workout 29
from page 379

1. Let A2 = {1, 2} and A3 = {a, b, c}. List the elements of the four
sets (Ai⇀⇀Aj) for i, j ∈ {2, 3}.

2. Prove Theorem 115 (on page 373).

3. Show that
(

PFun(A,B),⊆
)

is a partial order.

4. Show that the intersection of a collection of partial functions in
PFun(A,B) is a partial function in PFun(A,B).
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5. Show that the union of two partial functions in PFun(A,B) is a
relation that need not be a partial function. But that for
f, g ∈ PFun(A,B) such that f ⊆ h ⊇ g for some h ∈ PFun(A,B),
the union f ∪ g is a partial function in PFun(A,B).
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Workout 30
from page 385

1. Let A2 = {1, 2} and A3 = {a, b, c}. List the elements of the four
sets (Ai ⇒ Aj) for i, j ∈ {2, 3}.

2. Prove Theorem 120 (on page 384).
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Workout 31
from page 391

1. Prove Theorem 124 (on page 389).

2. For f : A→ B, prove that if there are g, h : B→ A such that
g ◦ f = idA and f ◦ h = idB then g = h.

Conclude as a corollary that, whenever it exists, the inverse of
a function is unique.

— 511 —



Version of March 6, 2014

Workout 32
from page 397

1. For a relation R on a set A, prove that

◮ R is reflexive iff IA ⊆ R,

◮ R is symmetric iff R ⊆ Rop,

◮ R is transitive iff R ◦ R ⊆ R.

2. Prove that the isomorphism relation ∼= between sets is an
equivalence relation.

3. Prove that the identity relation IA on a set A is an equivalence
relation and that A/IA

∼= A.
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4. For an equivalence relation E on a set A, show that [a1]E = [a2]E

iff a1 Ea2, where [a]E = { x ∈ A | xEa } as on page 395.

5. Let E be an equivalence relation on a set A. We want to show
here that to define a function out of the quotient set A/E

is,

essentially, to define a function out of A that identifies
equivalent elements.

To formalise this, you are required to show that for any function
f : A→ B such that f(x) = f(y) for all (x, y) ∈ E there exists a
unique function f/E

: A/E
→ B such that f/E ◦ q = f, where

q : A։ A/E
denotes the quotient function.

Btw This proof needs some care, so please revise your
argument. Sample applications of its use follow.
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6. For a positive integer m, let ≡m be the equivalence relation on
Z given by

x ≡m y ⇐⇒ x ≡ y (mod m) .

Define a mapping Z/≡m
→ Zm and prove it bijective.

7. Show that the relation ≡ on Z× N+ given by

(a, b) ≡ (x, y) ⇐⇒ a · y = x · b
is an equivalence relation. Define a mapping (Z× N+)/≡ → Q

and prove it bijective.

8. Let B be a subset of a set A. Define the relation E on P(A) by
(

X, Y
)

∈ E ⇐⇒ X ∩ B = Y ∩ B .

Show that E is an equivalence relation. Define a mapping
P(A)/E

→ P(B) and prove it bijective.
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9. We will see here that there is a canonical way in which every
preorder can be turned into a partial order.

(a) Let
(

P,⊑
)

be a preorder. Define ≃ ⊆ P × P by setting

x ≃ y ⇐⇒
(

x ⊑ y & y ⊑ x
)

for all x, y ∈ P.

Prove that ≃ is an equivalence relation on P.

(b) Consider now P/≃ and define ⊏∼ ⊆ P/≃ × P/≃ by setting

X ⊏∼ Y ⇐⇒ ∀ x ∈ X.∃y ∈ Y. x ⊑ y

for all X, Y ∈ P/≃.

Prove that
(

P/≃,⊏∼

)

is a partial order.

— 515 —



Version of March 6, 2014

Workout 33
from page 402

1. Make sure that you understand the calculus of bijections on
pages 398 and 399.

2. Write ML functions describing the calculus of bijections, where
the set-theoretic product × is interpreted as the product type *,
the set-theoretic disjoint union ⊎ is interpreted as the sum
datatype sum (see page 502), and the set-theoretic function⇒
is interpreted as the arrow type ->.

Btw The theory underlying this question is known as the
Curry-Howard correspondence.
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For instance,

◮ for the bijection
(

(A× B)⇒ C
)

∼=
(

A⇒ (B⇒ C)
)

you need provide ML functions of types

((’a*’b)->’c) -> (’a->(’b->’c))

and

((’a->(’b->’c)) -> ((’a*’b)->’c)

such that when understood as functions on sets yield a
bijection, and
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◮ for the implication

(X ∼= A & B ∼= Y ) =⇒ (A⇒ B) ∼= (X⇒ Y)

you need provide an ML function of type

(’x->’a)*(’b->’y) -> (’a->’b)->(’x->’y)

such that when understood as a function between sets it
constructs the required compound bijection from the two given
component ones.
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Workout 34
from page 405

1. Prove Theorem 131 (on page 404).
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Workout 35
from page 413

1. Give three examples of functions that are surjective and three
examples of functions that are not.

2. Prove Theorem 134 (on page 410).

3. From surjections A։ B and X։ Y define, and prove
surjective, functions A× B։ X× Y and A ⊎ B։ X ⊎ Y.

4. For an infinite set S, prove that if there is a surjection N→ S

then there is a bijection N→ S.
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Workout 36
from page 420

1. Prove Proposition 138 (on page 419).
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Workout 37
from page 426

1. Give three examples of functions that are injective and three of
functions that are not.

2. Prove Theorem 140 (on page 424).

3. For a set X, prove that there is no injection P(X)→ X.

[Hint: By way of contradiction, assume an injection
f : P(X)→ X, consider

W =
{
x ∈ X | ∃Z ∈ P(X). x = f(Z) & x 6∈ Z

}
∈ P(X) ,

and ask whether or not f(W) ∈ X is in W.]
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4. For an infinite set S, prove that the following are equivalent:

(a) There is a bijection N→ S.

(b) There is an injection S→ N.

(c) There is a surjection N→ S
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Workout 38
from page 431

1. What is the direct image of Z under the negative-doubling
function Z→ Z : n 7→ −2 · n? And the direct image of N?

2. For a relation R : A−→p B and X ⊆ A, show that
−→
R (X) =

⋃

x∈X

−→
R
(

{x}
)

.

3. For a relation R : A−→p B and Y ⊆ B, show that
←−
R (Y) =

{
a ∈ A |

−→
R
(

{a}
)

⊆ Y
}

.

Conclude as a corollary that, for a function f : A→ B,
←−
f (Y) =

{
a ∈ A | f(a) ∈ Y

}
.
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4. Show that, by inverse image,

every map A→ B induces a
Boolean algebra map P(B)→ P(A) .

That is, for every function f : A→ B,

◮
←−
f (∅) = ∅

◮
←−
f (X ∪ Y) =

←−
f (X) ∪←−f (Y)

◮
←−
f (B) = A

◮
←−
f (X ∩ Y) =

←−
f (X) ∩←−f (Y)

◮
←−
f
(

Xc
)

=
(←−
f (X)

)c

for all X, Y ⊆ B.

(If you like this kind of stuff, investigate what happens with
partial functions and relations; and also look at direct images.)
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5. Show that

the inverse and direct images of a relation form a
Galois connectiona

That is, for all R : A−→p B, the direct image and inverse image
functions

P(A)

−→
R

//

P(B)
←−
R

oo

are such that

◮ for all X ⊆ X ′ in P(A),
−→
R (X) ⊆ −→

R (X ′);

◮ for all Y ⊆ Y ′ in P(B),
←−
R (Y) ⊆←−R (Y ′);

◮ for all X ∈ P(A) and Y ∈ P(B),
−→
R (X) ⊆ Y ⇐⇒ X ⊆←−R (Y).

aThis is a fundamental mathematical concept, with many applications in com-

puter science (e.g. in the context of abstract interpretations for static analysis).
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6. Prove that for a surjective function f : A։ B, the direct image

function
−→
f : P(A)→ P(B) is surjective.

7. For sets A and X, show that the mapping

f 7→
{
b ⊆ A | ∃ x ∈ X. b =

←−
f
(

{x}
)}

yields a function Sur(A,X)→ Part(A). Is it surjective? And
injective?
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Workout 39
from page 440

1. Prove Corollary 147 on page 437.

2. Make sure that you understand the calculus of bijections on
page 438.
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Workout 40
from page 449

1. Which of the following sets are finite, which are infinite but
countable, and which are uncountable?

(a)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) ≤ f(n+ 1)
}

(b)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(2 · n) 6= f(2 · n+ 1)
}

(c)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) 6= f(n+ 1)
}

(d)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) ≤ f(n+ 1)
}

(e)
{
f ∈

(

N⇒ [2]
)

| ∀n ∈ N. f(n) ≥ f(n+ 1)
}
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