Sets
Objective

To introduce the basics of the theory of sets and some of its
applications.
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Sets
It has been said that a set is like a mental “bag of dots”, except of

course that the bag has no shape; thus,
-
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\
may be a convenient way of picturing a certain set for some con-
siderations, but what is apparently the same set may be pictured
as

[.(1,1) o2 o(1.2) o22) o(13) ¢(23) o(14) o24) (1,5 .(2,5))

D

for other considerations.

or even simply as
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Naive Set Theory

We are not going to be formally studying Set Theory here; rather,
we will be naively looking at ubiquituous structures that are
avalilable within it.
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Extensionality a%

Two sets are equal if they have the samé\elements.

Thus, )

Vsets A,B. A=B & (Vx.x€ A &< xe€B) .

Example:

0) 7 10,1} = {1,0; # {2} = 12,2
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Subsets and supersets
__C,B/ dica sbrl of B
a dftﬂ B hj«ﬂé‘%@[;ﬂ
f% Vz. 26ADXEA

Nb  A=B &> Qat_c,g L BEA)
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Separation principle

For any set A and any definable property P, there is a
set containing precisely those elements of A for which
the property P holds.

|

663 APyl < (ashe P@)
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Russell’s paradox

- olsto wi S I A W hBe
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b VoA pA

Empty set
O or {}
defined by
Vx.x & ()

or, equivalently, by

—(Ix.x € 0)
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Cardinality

The cardinality of a set specifies its size. If this is a natural number,
then the set is said to be finite.

Typical notations for the cardinality of a set S are #S or |S|.

Example:
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Powerset axiom

For any\s\et, there is a set consisting of all its subsets.
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Hasse diagrams
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Hasse diagrams
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Proposition 70 For all finite sets U,




gngfné&

Venn diagrams?

“From http://en.wikipedia.org/wiki/Intersection_(set_theory) .
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Union Intersection

Complement
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The powerset Boolean algebra

v
AUB = {xelU|xe AV xeB}

& 4
ANB = {xelU|xeA &xeB}

4 <
A¢ = {xelU|—-(xeA)}
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» The union operation U and the intersection operation N are
associative, commutative, and idempotent.

(pusyuC = AU(BOC)
(Aﬂﬁ)nc = AN (Bnc)

A() A—::A AQA':*/A
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» The empty set () is a neutral element for U and the universal
set U is a neutral element for N.
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» The empty set () is an annihilator for N and the universal set U
IS an annihilator for U.
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» With respect to each other, the union operation U and the
Intersection operation N are absorptive and distributive.

A0Buc) = (AOB) u@nc))
AUBND = (U8 o (Auc)

KOA

0 [ xu (x0 A) =X L

NEAA

0‘”% XO(XUA)= K
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» The complement operation ()¢ satisfies complementation laws.

XUX = U
Xﬂxcc/d
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