Number systems
Objectives

» Get an appreciation for the abstract notion of number system,
considering four examples: natural numbers, integers,
rationals, and modular integers.

» Prove the correctness of three basic algorithms in the theory of
numbers: the division algorithm, Euclid’s algorithm, and the
Extended Euclid’s algorithm.

» Exemplify the use of the mathematical theory surrounding
Euclid’'s Theorem and Fermat’s Little Theorem in the context of

public-key cryptography.



Natural numbers

In the beginning there were the natural numbers

N: 0, T, ..., n, n+1l,
generated from zero by successive increment; that is, put in ML:

datatype

N = zero | succ of N



The basic operations of this number system are:

» Addition
m n
mn
» Multiplication
n
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~ The additive structure (N, 0, +) of natural numbers with zero and

addition satisfies the following:
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and as such is what in the mathematical jargon is referred to as
a commutative monoid.
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Also the multiplicative structure (N, 1, -) of natural numbers with one
and multiplication is a commutative monoid:

» Monoid laws

Il'n=n=n-1, (I-m):n=1-(m-n)

» Commutativity law

m-nm=n-m



The additive and multiplicative structures interact nicely in that they
satisfy the

» Distributive law

l-(m+n) = Il-m+1-n
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and make the overall structure (N, 0, +, 1, -) into what in the mathe-
matical jargon is referred to as a commutative semiring.
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Cancellation

The additive and multiplicative structures of natural numbers further
satisfy the following laws.

» Additive cancellation

For all natural numbers k, m, n,
kd+dFm=k4+n — m=n

» Multiplicative cancellation

For all natural numbers k, m, n,
fk#A0thenk-m=k-n = m=n
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1. A number x is said to admit an additive inverse whenever there
exists a number y such that x +y = 0.
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Inverses

Definition 37

1. A number x is said to admit an additive inverse whenever there
exists a number y such that x +y = 0.

2. A number x Is said to admit a multiplicative inverse whenever
there exists a number y such that x -y = 1.
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Extending the system of natural numbers (i) to admit all additive
iInverses and then (ii) to also admit all multiplicative inverses for
non-zero numbers yields two very interesting results:

(1) the integers

Zi v ...—my ..., —1,0, 1, ..., n, ...

which then form what in the mathematical jargon is referred to
as a commutative ring, and

(i) the rationals Q which then form what in the mathematical jargon
IS referred to as a field.
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The division theorem and algorithm

Theorem 38 (Division Theorem) For every natural number m and
positive natural number n, there exists a unique pair of integers g
and rsuchthatg > 0,0 <r<n,andm=q-n+r.
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