Negation

Negations are statements of the form

not P

or, in other words,

P is not the case

or

P is absurd

or

P leads to contradiction

or, in symbols,

A first proof strategy for negated goals and assumptions:

If possible, reexpress the negation in an *equivalent* form and use instead this other statement.

Parallel Logical equivalences
$$\neg (P) \Rightarrow P$$

Parallel Para

Trath tables

(P=)Q) (=> (2PVQ) P & 2 7(P=)Q) (=> 7 (7PVQ) (=> 77P&7Q)

Theorem 33 For all statements P and Q,

PROOF: Let P and a Se s btemento. A sound

P = a. Assume
$$7 a \Rightarrow (-Q \Rightarrow -P)$$
.

By MP, Assume $7 a \Rightarrow (a \Rightarrow false)(2)$

By MP, P = a $\Rightarrow false$

Therefore $(P \Rightarrow false) \Rightarrow (P \Rightarrow a)$?

Theorem 34 The real number $\sqrt{2}$ is irrational. 7 (T2 rational) Proof: (=) (12 rational =) falle) Assume Vz rational (\Rightarrow) (Fint m, n. $\sqrt{2} = m/n$) Let mo ende no be integers such That $\sqrt{2} = m_0/n_c$ Thus, $2(n_0)^2 = (m_0)^2$ Hence $(m_0)^2$ is even. and $mo = 2 m_1$ for some m_1 .

Now $2(n_0)^2 = 4(m_1)^2$ and so $N_0^2 = 2 (m_1)^2$ hence been from which it follows that no is even. Kecop Whenever $\sqrt{2} = m_0/n_0$ then it is necessarily the care that both mo and no are even. This is absurd becouse Then the fraction for Jz would not have an equisalent in lowest tems.

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg P \implies false$

which is proved by assuming 7P and establishing a contradiction.

Proof by contradiction

The strategy for proof by contradiction:

To prove a goal P by contradiction is to prove the equivalent statement $\neg P \implies false$

Proof pattern:

In order to prove

P

- 1. Write: We use proof by contradiction. So, suppose P is false.
- 2. Deduce a logical contradiction.
- 3. Write: This is a contradiction. Therefore, P must be true.

Scratch work:

Before using the strategy

Assumptions

Goal

P

i

After using the strategy

Assumptions

Goal

contradiction

i

 $\neg P$

Theorem 35 For all statements P and Q,

Every retional number can be expressed as a Lemma 36 A positive real number x is rational iff freetish in
$\begin{cases} \exists positive integers m, n: \\ x = m/n & \neg(\exists prime p: p \mid m & p \mid n) \end{cases}$
PROOF: (=) Eday. (=) Assue 2 rational (=) (2) h (x = k/4)
(JR, (JR, (JR)))
By contradiction, ne 25 sume 7 (*)
() H pos. unt m, n. ~ (Z=m/n & ~ (~~))
$\Leftrightarrow \forall pos lint m, n. \neg (x=m/n) \lor \neg \neg (n)$ $\Leftrightarrow \forall pos int m, n. \neg (x=m/n) \lor (n)$

I want to Show that By (1), let 2 and l
be, such that $z=k/\ell$.

posint. Then, by (2) specialised to contradiction.

I prime po. polk & poll. fakadl $\chi = k/\ell = \frac{p_0 \cdot k_0}{\ell_0 \cdot \ell_0} = \frac{k_0}{\ell_0} = \frac{p_1 \cdot k_1}{\ell_1 \cdot \ell_1} = \frac{k_1}{\ell_1}$

 $R = p_0 k_0 = p_0 p_1 k_1 = p_0 p_1 p_2 k_2$ $= p_0 \cdot p_1 - - \cdot p_R \cdot k'$ $7 \cdot 2^R$