Existential quantification

Existential statements are of the form

there exists an individual x in the universe of
discourse for which the property P(x) holds

or, in other words,

for some individual x in the universe of discourse, the
property P(x) holds

or, in symbols, % W{ﬂ?

Tx. P(x) PC@)




Theorem 21 (Intermediate value theorem) Let f be a real-valued
continuous function on an interval [a, b]. For every y in between f(a)
and f(b), there exists v in between a and b such that f(v) =y.
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The main proof strategy for existential statements:

To prove a goal of the form
Fx. P(x)

find a witness for the existential statement; that is, a value
of x, say w, for which you think P(x) will be true, and show
that indeed P(w), i.e. the predicate P(x) instantiated with
the value w, holds.
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Proof pattern:
In order to prove

Ix. P(x)

1. Write: Let w = ... (the withess you decided on).

2. Provide a proof of P(w).




Scratch work:

Before using the strategy
Assumptions Goal

Ix. P(x)

After using the strategy
Assumptions Goals

P(w)

w = ... (the withess you decided on)
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Proposition 22 For every positive integer k, there exist natural
numbers i and j such that 4 - k = i* —j2.

PROOF OF Proposition 22:
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The use of existential statements:

To use an assumption of the form Jx. P(x), introduce a new
variable x, into the proof to stand for some individual for
which the property P(x) holds. This means that you can
now assume P(x,) true.
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Theorem 24 For all integers |, m, n, if L | mand m | n then 1| n.
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Disjunction

Disjunctive statements are of the form

or, in other words,

or, in symbols,

Por Q

either P, Q, or both hold

PV Q




The main proof strategy for disjunction:

To prove a goal of the form
PV Q
you may

1. try to prove P (if you succeed, then you are done); or

2. try to prove Q (if you succeed, then you are done);
otherwise

3. break your proof into cases; proving, in each case,
either P or Q.



Proposition 25 For all integers n, either n* = 0 (mmod 4) or
n? =1 (mod 4). c
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The use of disjunction:

To use a disjunctive assumption
P1 V P,

to establish a goal Q, consider the following two cases in
turn: (i) assume P, to establish Q, and (ii) assume P, to
establish Q.
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Scratch work:

Before using the strategy
Assumptions Goal

Q
Py V P,

After using the strategy
Assumptions Goal Assumptions Goal

Q Q
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Proof pattern:
In order to prove Q from some assumptions amongst which there

IS
P, V P,

write: We prove the following two cases in turn: (i) that assuming

Pi, we have Q; and (ii) that assuming P,, we have Q. Case (1):

Assume P;. and provide a proof of Q from it and the other as-

sumptions. Case (ii): Assume P,. and provide a proof of Q from

It and the other assumptions.




