Rushile B do C 1 = $\lambda s. f(IBJs, Iwhile B do cJ(ICJs), s)$ 19 Con This be Token as a définition? ? Js This compositional? Live learn That Twhile B do CI has The interesting property of being a fixed point.

Def A fixed point of a function f is In element a such That f(a) = a. There is a function for which [while B do C] is a fixed point, nomely Lws. Ls. if (FB7, w (FC7, s), s) = if FBJJG So we can try To define: Is a definition provided we de fue [while B do C] = fiz (fils], EC]) fre L Course 2001 A!

 $\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(\llbracket \mathbf{while} \ B \ \mathbf{do} \ C \rrbracket)$ where, for each $b : State \rightarrow \{true, false\}$ and $c : State \rightarrow State$, we define

$$f_{b,c}: (State \rightarrow State) \rightarrow (State \rightarrow State)$$

as

$$f_{b,c} = \lambda w \in (State \rightharpoonup State). \ \lambda s \in State. \ if (b(s), w(c(s)), s).$$

- Why does $w = f_{\llbracket B \rrbracket, \llbracket C \rrbracket}(w)$ have a solution?
- What if it has several solutions—which one do we take to be
 [while B do C]?

E (Sta-State) Approximating \llbracket while $B \operatorname{do} C \rrbracket$ frøn, ren: (State-State) -, (State-State) LE (State - State) ~ The Totally undefined function 15 Twhile B do CJ ? approximates Consider f(BD, ECD(L))= $\lambda s. f(TBDs, L(ECDs), s)$

 $f_{NBJ, TCJ}(L) = \lambda s. if(TBJs, L, s)$

15 fill, TCM (2) 5 Fishel B do CM

Consider $f_{asy.acy} \left(f_{asy,acy} \perp \right)$ $= \lambda s. y \left(asys, (\lambda s'. y (asys', +, s') (\pi c v s), s \right)$ $= \lambda s. y \left(\pi s v s, f(\pi s v s), f(\pi s v s), +, \pi c v s \right), s \right)$

 $L = \int \mathcal{F}_{BT, ACY}(L) = \int \mathcal{F}_{BT, ACY}(L) = \dots$ 5... f 18], Kcg (1) 5 5 Fuhle B do CM 5 Fuhle B do CM $5 \text{ Fuhle B do CM} = U_n f_{RBM, ECM} (1)$ = fix (forst, tc))

Approximating while $B \operatorname{do} C$

$$\begin{split} f_{\llbracket B \rrbracket, \llbracket C \rrbracket}^{n}(\bot) \\ &= \lambda s \in State. \\ & \left\{ \begin{array}{ll} \llbracket C \rrbracket^{k}(s) & \text{if } \exists \ 0 \leq k < n. \ \llbracket B \rrbracket(\llbracket C \rrbracket^{k}(s)) = false \\ & \text{and } \forall \ 0 \leq i < k. \ \llbracket B \rrbracket(\llbracket C \rrbracket^{i}(s)) = true \\ \uparrow & \text{if } \forall \ 0 \leq i < n. \ \llbracket B \rrbracket(\llbracket C \rrbracket^{i}(s)) = true \end{array} \right. \end{split}$$

$$graph(w) = \{(x, wx)\} w x \text{ is defined} \}$$

 $D \stackrel{\text{def}}{=} (State \rightarrow State)$ approximation

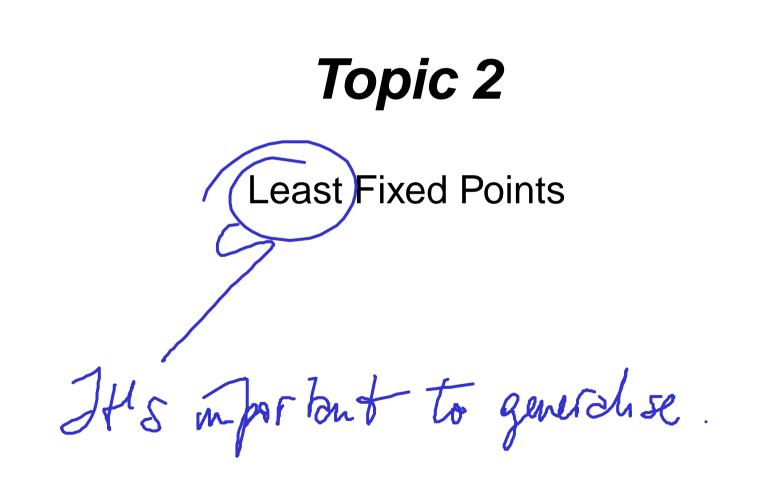
• Partial order \sqsubseteq on D:

 $w \sqsubseteq w'$ iff for all $s \in State$, if w is defined at s then so is w' and moreover w(s) = w'(s).

iff the graph of w is included in the graph of w'.

- Least element $\bot \in D$ w.r.t. \sqsubseteq :
 - \perp = totally undefined partial function
 - = partial function with empty graph

(satisfies $\perp \sqsubseteq w$, for all $w \in D$).

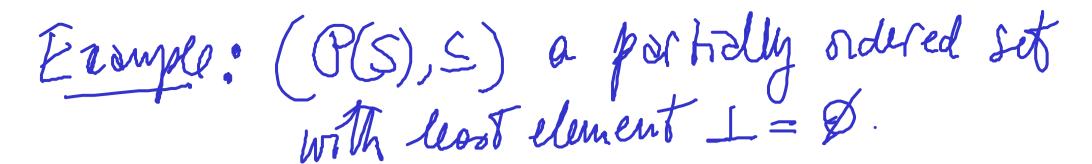


Examples: (State - State) is a domain *frey*, *ICT*: (*State-State*) - (*State-State*) *frey*, *ICT*: (*State-State*) - (*State-State*) Thesis is monstone

All domains of computation are partial orders with a least element.

All computable functions are mononotic.

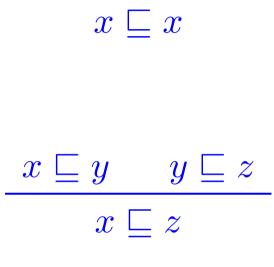
functions
$$f s.t. z = y \Rightarrow f(x) = f(y)$$



Partially ordered sets

A binary relation \sqsubseteq on a set D is a partial order iff it is reflexive: $\forall d \in D. \ d \sqsubseteq d$ transitive: $\forall d, d', d'' \in D. \ d \sqsubseteq d' \sqsubseteq d'' \Rightarrow d \sqsubseteq d''$ anti-symmetric: $\forall d, d' \in D. \ d \sqsubseteq d' \sqsubseteq d' \Rightarrow d = d'.$

Such a pair (D, \sqsubseteq) is called a partially ordered set, or poset.



$$\begin{array}{c|c} x \sqsubseteq y & y \sqsubseteq x \\ \hline x = y \end{array}$$

Domain of partial functions, $X \rightharpoonup Y$

Underlying set: all partial functions, f, with domain of definition $dom(f) \subseteq X$ and taking values in Y.

Partial order:

$$\begin{array}{ll} f\sqsubseteq g & \text{iff} & dom(f)\subseteq dom(g) \text{ and} \\ & \forall x\in dom(f). \ f(x)=g(x) \\ & \text{iff} & graph(f)\subseteq graph(g) \end{array}$$

• A function $f: D \to E$ between posets is monotone iff $\forall d, d' \in D. \ d \sqsubseteq d' \Rightarrow f(d) \sqsubseteq f(d').$

$$\frac{x \sqsubseteq y}{f(x) \sqsubseteq f(y)} \quad (f \text{ monotone})$$

Notion
$$D = (D, 5_D) = (D, 5)$$

Least Elements

Suppose that D is a poset and that S is a subset of D. An element $d \in S$ is the *least* element of S if it satisfies

$$\forall x \in S. \ d \sqsubseteq x$$

- Note that because \sqsubseteq is anti-symmetric, S has at most one least element.
- Note also that a poset may not have least element.