
˜
Appendix to

Topic IV ˜
Block-structured procedural languages

BCPL and C

References:

� Chapters 1 to 3 of BCPL, the language and its compiler

by M. Richards and C. Whitby-Strevens. CUP, 1979.

112

BCPL
LET BCPL BE

$(LET CPL = "Combined Programming Language"

WRITEF("Basic %S", CPL) $)

� Designed by Martin Richards in 1967 at MIT.

� Originally developed as a compiler-writing tool, has also

proved useful as a systems-programming tool.

� BCPL adopted much of the syntactic richness of CPL;

however, in order to achieve the efficiency necessary for

systems-programming, its scale and complexity is far

less than that of CPL.

� BCPL has only one data type: the bit-pattern.

113

BCPLa

Philosophy

� Abstract machine.

The most important feature is the store: a set of numbered

storage cells arranged so that the numbers labelling

adjacent cells differ by one.

All storage cells are of the same size and each of them

holds a value (= bit-pattern). A value is the only kind of

object that can be manipulated directly in BCPL, and

every variable and expression in that language will always

evaluate to one of these.

aNotes from Chapter 1 of BCPL, the language and its compiler by

M.Richards and C.Whitby-Strevens. CUP, 1979.

114

Many basic operations on values are provided. One of

these, of fundamental importance, is indirection. This

operation takes one operand with is interpreted as an

integer and yields the contents of the storage cell labelled

by that integer.

� Data types.

The design of BCPL distinguishes between two classes of

data types.

1. Conceptual types. The kind of abstract object the

programmer had in mind.

2. Internal types. Basic types for modelling conceptual types.

Much of the flavour of BCPL is the result of the conscious

design decision to provide only one internal type. The

115

most important effects on language design are:

1. There is no need for type declarations in the language.

This helps to make programs concise and also simplifies

problems such as the handling of actual/formal parameter

correspondence and separate compilation.

2. It gives the language nearly the same power as one with

dynamically varying types (as in LISP), and yet retains the

efficiency of a language (like FORTRAN) with manifest

types. In languages (such as Algol) where the elements of

arrays must all have the same type, one needs some other

linguistic device in order to handle dynamically varying data

structures.

3. Since there is only one internal type in the language there

can be no automatic type checking, and it is possible to

116

write nonsensical programs which the compiler will

translate without complaint.

� Variables.

The purpose of a declaration in BCPL is: to introduce a

name and specify its scope; to specify its extent; to specify

its initial value.

In BCPL, variables may be divide into two classes:

1. Static variables. The extent of a static variable is the entire

execution time of the program. The storage cell is allocated

prior to execution and continues to exist until execution is

complete.

2. Dynamic variables. A dynamic variable is one whose extent

starts when its declaration is executed and continues until

117

execution leaves the scope of the variable. Dynamic

variables are usually necessary when using routines

recursively.

� Recursion.

Procedures may be used recursively, and in order to allow

for this and yet maintain very high execution efficiency,

there is the restriction that the free variables of a

procedure must be static.

� Modularity.

BCPL uses a form of static storage, called global vector,

which allows separately compiled modules to reference

and call each other and to share data. This facility is not

unlike the FORTRAN COMMON storage area.

118

Pointers and arrays

� A pointer in BCPL is the address of a word of store.

� The unary operator @ is used to produce the address of a

variable.

� The unary operator ! is used to access the store cell

pointed to by an address.

� The array declaration

LET V = VEC 2

establishes: (i) an array of three consecutive locations,

and (ii) a separate variable V which is initialised to the

address of the first location of the array:

119

V • // V!0

V!1

V!2

(V!E =def !(V+E))

Here V behaves like any other local variable, the main

difference being that it is initialised by the compiler as a

pointer. Hence its value can be copied into another

variable (which as a result will also point to the same

array), or passed as a parameter to a procedure.

120

Parameter passing

The BCPL procedure call uses the call-by-value technique for

parameter passing.

As simple variables are passed by value, a copy is made of

the actual parameters for the called procedure to use.

Assigning to the formal parameters will not change the values

of the original variables specified as actual parameters. This is

similar to the Algol call-by-value mechanism, and in contrast to

the FORTRAN parameter-passing mechanism.

The effect of the parameter-passing mechanism in BCPL is

that simple variables are passed by value, and vectors by

reference.

121

Procedures
LET COUNT(ARRAY, SIZE) = VALOF

$(LET NUMBER = 0

FOR I = 0 TO SIZE DO ARRAY!I := 0

$(LET C = READN()

IF C < 0 RESULTIS NUMBER

IF C > SIZE THEN C := SIZE

ARRAY!C := ARRAY!C + 1

NUMBER := NUMBER + 1

$) REPEAT

$)

Note that there is no mention that ARRAY is an array. It is the

programmer’s responsibility to make sure that if a parameter is

treated as an array inside a procedure, then an array is

provided in the procedure call.

122

Procedures as values

� BCPL has been carefully designed so that it is possible to

represent a procedure by a simple BCPL value, called the

procedure value. The procedure value is placed in a

variable bearing the name of the procedure.

� Procedure values can be assigned to ordinary variables.

123

...

LET CH = GETBYTE(FORMAT, P)

SWITCHON CH INTO

$(...

CASE ‘S’: F:= WRITES; GOTO L

CASE ‘C’: F:= WRCH; GOTO L

...

$)

...

L: F(ARG, N)

Thus, a procedure may be passed as a parameter to

another procedure, or returned as the result of a function

call.

124

Example: I/O streams

LET NEXT(S) = (S!0)(S)

LET OUT(S,X) BE (S!1)(S,X)

The relevant information concerning a particular stream S

is stored in an array to which S points. The first few items

in this array are procedure values. The array takes the

following form

S −→ NEXT.SOURCE

OUT.SINK
...

The procedure value held in the zeroth element of S

represents the function which implements NEXT, etc.

125

C

� Designed and implemented from 1969 to 1973, as part of

the Unix operating system project at Bell Labs.

� C was designed by Dennis Ritchie, as an evolution of

Ritchie and Ken Thompson’s language B, which was in

turn based on BCPL.

B was a pared-down version of BCPL, designed to run on

the small computer used by the Unix project. The main

difference between B and C is that B was untyped

whereas C has types and type-checking rules.

126

� An important feature of C has been the tolerance of C

compilers to type errors. This is partly because C evolved

from typeless languages. As C evolved further and was

later standardised by an ANSI committee in the

mid-1980s, backward compatibility with the then-existing

C code also prevented strong typing restriction. One of the

most commonly cited advantages of C++ over C is the fact

that C++ provides better type checking.

127

Summary

� The C programming language is similar to Algol 60,

Algol 68, and Pascal in some respects: command-oriented

syntax, blocks, local declarations, and recursive functions.

However, C also shares some features with its untyped

precursor BCPL, such as pointer arithmetic. C is also

more restricted than most Algol-based languages in that

functions cannot be declared inside nested blocks: All

functions are declared outside the main program. This

simplifies storage management.

128

