
Complexity Theory 1

Complexity Theory

Lecture 11

Anuj Dawar

University of Cambridge Computer Laboratory

Easter Term 2014

http://www.cl.cam.ac.uk/teaching/1314/Complexity/

Anuj Dawar May 19, 2014

Complexity Theory 2

Inclusions

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
�

∞

k=1 TIME(2n
k

)

Moreover,

L ⊆ NL ∩ co-NL

P ⊆ NP ∩ co-NP

PSPACE ⊆ NPSPACE ∩ co-NPSPACE

Anuj Dawar May 19, 2014

Complexity Theory 3

Reachability

Recall the Reachability problem: given a directed graph G = (V,E)

and two nodes a, b ∈ V , determine whether there is a path from a

to b in G.

A simple search algorithm solves it:

1. mark node a, leaving other nodes unmarked, and initialise set

S to {a};

2. while S is not empty, choose node i in S: remove i from S and

for all j such that there is an edge (i, j) and j is unmarked,

mark j and add j to S;

3. if b is marked, accept else reject.

Anuj Dawar May 19, 2014

Complexity Theory 4

NL Reachability

We can construct an algorithm to show that the Reachability

problem is in NL:

1. write the index of node a in the work space;

2. if i is the index currently written on the work space:

(a) if i = b then accept, else

guess an index j (logn bits) and write it on the work space.

(b) if (i, j) is not an edge, reject, else replace i by j and return

to (2).

Anuj Dawar May 19, 2014

Complexity Theory 5

Complementation

A still more clever algorithm for Reachability has been used to show

that nondeterministic space classes are closed under

complementation:

If f(n) ≥ logn, then

NSPACE(f(n)) = co-NSPACE(f(n))

In particular

NL = co-NL.

Anuj Dawar May 19, 2014

Complexity Theory 6

Logarithmic Space Reductions

We write

A ≤L B

if there is a reduction f of A to B that is computable by a

deterministic Turing machine using O(logn) workspace (with a

read-only input tape and write-only output tape).

Note: We can compose ≤L reductions. So,

if A ≤L B and B ≤L C then A ≤L C

Anuj Dawar May 19, 2014

Complexity Theory 7

NP-complete Problems

Analysing carefully the reductions we constructed in our proofs of

NP-completeness, we can see that SAT and the various other

NP-complete problems are actually complete under ≤L reductions.

Thus, if SAT ≤L A for some problem A in L then not only P = NP

but also L = NP.

Anuj Dawar May 19, 2014

Complexity Theory 8

P-complete Problems

It makes little sense to talk of complete problems for the class P

with respect to polynomial time reducibility ≤P .

There are problems that are complete for P with respect to

logarithmic space reductions ≤L.

One example is CVP—the circuit value problem.

• If CVP ∈ L then L = P.

• If CVP ∈ NL then NL = P.

Anuj Dawar May 19, 2014

Complexity Theory 9

CVP

CVP - the circuit value problem is, given a circuit, determine the

value of the result node n.

CVP is solvable in polynomial time, by the algorithm which

examines the nodes in increasing order, assigning a value true or

false to each node.

CVP is complete for P under L reductions.

That is, for every language A in P,

A ≤L CVP

Anuj Dawar May 19, 2014

Complexity Theory 10

Reachability

Similarly, it can be shown that Reachability is, in fact, NL-complete.

For any language A ∈ NL, we have A ≤L Reachability

L = NL if, and only if, Reachability ∈ L

Note: it is known that the reachability problem for undirected

graphs is in L.

Anuj Dawar May 19, 2014

Complexity Theory 11

Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f , there

is a language that is not in TIME(f).

The proof is based on the diagonal method, as in the proof of the

undecidability of the halting problem.

Anuj Dawar May 19, 2014

Complexity Theory 12

Constructible Functions

A complexity class such as TIME(f) can be very unnatural, if f is.

We restrict our bounding functions f to be proper functions:

Definition

A function f : IN → IN is constructible if:

• f is non-decreasing, i.e. f(n+ 1) ≥ f(n) for all n; and

• there is a deterministic machine M which, on any input of

length n, replaces the input with the string 0f(n), and M runs

in time O(n+ f(n)) and uses O(f(n)) work space.

Anuj Dawar May 19, 2014

Complexity Theory 13

Examples

All of the following functions are constructible:

• ⌈log n⌉;

• n2;

• n;

• 2n.

If f and g are constructible functions, then so are

f + g, f · g, 2f and f(g) (this last, provided that f(n) > n).

Anuj Dawar May 19, 2014

Complexity Theory 14

Using Constructible Functions

NTIME(f) can be defined as the class of those languages L

accepted by a nondeterministic Turing machine M , such that for

every x ∈ L, there is an accepting computation of M on x of

length at most O(f(n)).

If f is a constructible function then any language in NTIME(f) is

accepted by a machine for which all computations are of length at

most O(f(n)).

Also, given a Turing machine M and a constructible function f , we

can define a machine that simulates M for f(n) steps.

Anuj Dawar May 19, 2014

Complexity Theory 15

Inclusions

The inclusions we proved between complexity classes:

• NTIME(f(n)) ⊆ SPACE(f(n));

• NSPACE(f(n)) ⊆ TIME(klogn+f(n));

• NSPACE(f(n)) ⊆ SPACE(f(n)2)

really only work for constructible functions f .

The inclusions are established by showing that a deterministic

machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required

bounds.

Anuj Dawar May 19, 2014

Complexity Theory 16

Time Hierarchy Theorem

For any constructible function f , with f(n) ≥ n, define the

f -bounded halting language to be:

Hf = {[M], x | M accepts x in f(|x|) steps}

where [M] is a description of M in some fixed encoding scheme.

Then, we can show

Hf ∈ TIME(f(n)2) and Hf �∈ TIME(f(⌊n/2⌋))

Time Hierarchy Theorem

For any constructible function f(n) ≥ n, TIME(f(n)) is properly

contained in TIME(f(2n+ 1)2).

Anuj Dawar May 19, 2014

