L9

A-Terms, M

are built up from a given, countable collection of
» variables x,y, z,...
by two operations for forming A-terms:

» A-abstraction: (Ax.M)
(where x is a variable and M is a A-term)

» application: (M M")
(where M and M’ are A-terms).

Some random examples of A-terms:

v () ((An(ey)x)  (Ay((Ay.(xy))x)
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w-Equivalence M =, M’

is the binary relation inductively generated by the rules:

z#(MN) M{z/x} =, N{zly}
X =4 X Ax.M =, Ay.N

M=, M N =, N’
MN =, M’ N’

where M{z/x} is M with all occurrences of x replaced by
z.
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Substitution N[M/x]

x[Mlx] = M

yMix] =y ify#x
(Ay.N)[M/x] = Ay.N[M/x] if y# (Mx)
(N1 N») [M/x] = Ni[M/x] N,[M/x]

N [M2) = sk o replacing all free occarronces
Cfe w wv N ot M,_—_O\A.)Oi(bng,
" Cophart’ of fiee vaviades in M by
A-biders in N
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Substitution N [M/x]

x[Mlx] = M

yMix]| =y ify#x
(Ay.N)[M/x] = Ay.N[M/x] if y# (M x)
(N1 N>) [M/x] = N;i[M/x] N,[M/x]

Side-condition y # (M x) (y does not occur in M and
Yy 7 x) makes substitution “capture-avoiding”.

Eg ifx#y
(Ay-x)[y/x] # Ay.y
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Substitution N[M/x]

x[Mlx] = M

yMix]| =y ify#x
(Ay.N)[M/x] = Ay.N[M/x] if y# (Mx)
(N1 N») [M/x] = Ni[M/x] N,[M/x]

Side-condition y # (M x) (y does not occur in M and
Yy 7 x) makes substitution “capture-avoiding”.

Eg ifx#y#z#x
(Ay.x)[y/x] =« (Azx)[ylx] = Az.y

In fact N — N[M/x] induces a totally defined function
from the set of a-equivalence classes of A-terms to itself.
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B-Reduction

Recall that Ax.M is intended to represent the function f
such that f(x) = M for all x. We can regard Ax.M as a
function on A-terms via substitution: map each N to
M|[N/x].

So the natural notion of computation for A-terms is given
by stepping from a

B-redex (Ax.M)N

to the corresponding

B-reduct M[N/x]

L10
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pB-Reduction

One-step B-reduction, M — M’:

M — M’
(Ax.M)N — M|[N/x] Ax.M — Ax.M'’
M — M’ M — M
MN — M'N NM— NM

N=M M—-M M=N
N — N’

L10
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pB-Reduction

-E . ((Ay.Az.z)u)y
(Axxy) ((Ay.Az.z)u)
- (Axxy)(Az.z)

\ .
. (Az.2)y y
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pB-Reduction

-E . ((AyAz.z)u)y
(Axxy) ((Ay.Az.z)u)
- (Axxy)(Az.2)

\ .
. (Az.2)y y
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pB-Reduction

-E . ((AyAz.z)u)y
(Axxy) ((Ay.Az.z)u)
- (Axxy)(Az.z)

\ .
. (Az.z)y y
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pB-Reduction

-E . ((AyAz.z)u)y
(Axxy) ((Ay.Az.z)u)
- (Axxy)(Az.2)

\ .
. (Az.z)y y
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pB-Reduction

-E . ((AyAz.z)u)y
(Axxy) ((Ay.Az.z)u)
- (Axxy)(Az.z)

\ .
. (Az.2)y y
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B-Reduction

E.g.
. ((AyAz.z)u)y
(Ax.xy) ((Ay.Az.z)u)\ j (Az.z)y —y
(Axxy)(Az.z)

E.g. of “up to a-equivalence” aspect of reduction:

(AxAyx)y =, (AxAzx)y — Azy
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Many-step B-reduction, M — M’:

M=, M M — M M — M’ M’ — M"

M — M’ M — M’ M — M"
(no steps) (1 step) (1 more step)
E.g.

(Axxy)((Ay z.2)u) —» y
(Ax.Ay.x)y — Azy
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p-Conversion M =g N

Informally: M =g N holds if N can be obtained from M
by performing zero or more steps of a-equivalence,
B-reduction, or B-expansion (= inverse of a reduction).

Eg u((Axy.vx)y) =g (Ax.ux)(Ax.vy)
because (Ax.ux)(Ax.vy) — u(Ax.vy)

and so we have

u((Axy.0x)y) = u((Axy-0x)y)

u(Ay’.vy) reduction
u(Ax.oy)
(Ax.ux)(Ax.vy) expansion

Ty

L10
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p-Conversion M =g N

is the binary relation inductively generated by the rules:

M=, M’ M— M M=z M
M=z M M=z M M =y M
M=gM M =zM" M=z M
M Zﬂ M” Ax.M Zﬁ Ax.M’
M=gM N=4zN

MN = M' N’

L10
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if M; « M — M,
then there exists M’ such that My — M’ « M,.

|

[Proof omitted.]

L10
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. Two show that two terms are B-convertible, it
suffices to show that they both reduce to the same term.
More precisely: My =g M, iff IM (M7 — M « M,).

L10
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. M; =g M, iff IM (M; — M « M,).

Proof. =g satisfies the rules generating —; so M — M’ implies

M =g M’ Thus if My — M « My, then M; =g M =g M) and so
My =g Mo.

Conversely, the relation {(M1, Mz) | IM (M1 — M « M)}

satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: M; M M, M’ M;
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. M; =g M, iff IM (M; — M « M,).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’ Thus if My — M « My, then M; =g M =g M) and so
My =g Mo.

Conversely, the relation {(M1, Mz) | IM (M1 — M « M)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: M; M M, M’ M;
\C—R /
M;
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. M; =g M, iff IM (M; — M « M,).

Proof. =g satisfies the rules generating —; so M — M’ implies
M =g M’ Thus if My — M « My, then M; =g M =g M) and so
My =g Mo.

Conversely, the relation {(M1, M) | 3IM (M1 - M « M)}
satisfies the rules generating =pg: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M1 =g M implies IM (My — M’ « M3).
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pB-Normal Forms

Definition. A A-term N is in S-normal form (nf) if it
contains no B-redexes (no sub-terms of the form
(Ax.M)M'). M has B-nf N if M =g N with N a B-nf.

L10
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B-Normal Forms

Definition. A A-term N is in S-normal form (nf) if it
contains no B-redexes (no sub-terms of the form

(Ax.M)M'). M has B-nf N if M =g N with N a B-nf.

Note that if N is a B-nf and N — N’, then it must be that N =, N’
(why?).

Hence if Ny =g N, with N7 and N; both B-nfs, then N7 =, N». (For
if Ny =g Nz, then by Church-Rosser Ny — M’ «— Nj for some M’,
SO N1 = M’ == Nz.)

So the B-nf of M is unique up to a-equivalence if it
exists.
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Non-termination

Some A terms have no B-nf.
Eg Q2 (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

» OO — M implies ) =, M.
So there is no B-nf N such that ) =g N.

L10
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Non-termination

Some A terms have no B-nf.
Eg Q2 (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

» OO — M implies ) =, M.
So there is no B-nf N such that ) =g N.

A term can possess both a B-nf and infinite chains of
reduction from it.

E.g. (Ax.y)Q — y, but also (Ax.y)Q — (Axy)Q — ---.
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Non-termination

Normal-order reduction is a deterministic strategy for
reducing A-terms: reduce the “left-most, outer-most” redex
first.

» left-most: reduce M before N in M N, and then

» outer-most: reduce (Ax.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the B-nf
of M if it possesses one.
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