
CST 2014 Part IB

Computation Theory

Exercise Sheet

A course on Computation Theory has been offered for many years. Since 2009 the course has
incorporated some material from a Part IB course on Foundations of Functional Programming
that is no longer offered. A guide to which Tripos questions from the last five years are
relevant to the current course can be found on the course web page (follow links from www.

cl.cam.ac.uk/teaching/). Here are suggestions for which of the older ones to try, together
with some other exercises.

Exercise 1. Exercises in register machine programming:

(a) Produce register machine programs for the functions mentioned on slide(s) 33 of the
notes

(b) Try Tripos question 1999.3.9.

Exercise 2. Undecidability of the halting problem:

(a) Try Tripos question 1995.3.9.

(b) Try Tripos question 2000.3.9.

Exercise 3. Let φe denote the unary partial function from numbers to numbers (i.e. an el-
ement of N⇀N—cf. slide 28) computed by the register machine with code e (cf. slide 54).
Show that for any given register machine computable unary partial function f , there are in-
finitely many numbers e such that φe = f . (Equality of partial functions means that they are
equal as sets of ordered pairs; which is equivalent to saying that for all numbers x, φe(x) is
defined if and only if f (x) is, and in that case they are equal numbers.)

Exercise 4. Suppose S1 and S2 are subsets of the set N = {0, 1, 2, 3, . . .} of natural numbers.
Suppose f ∈ N�N is register machine computable and satisfies: for all x in N, x is an ele-
ment of S1 if and only if f (x) is an element of S2. Show that S1 is register machine decidable
(cf. slide 56) if S2 is.

Exercise 5. Show that the set of codes 〈e, e′〉 of pairs of numbers e and e′ satisfying φe = φe′

is undecidable.

Exercise 6. For the example Turing machine given on slide 64, give the register machine
program implementing

(S, T, D) := δ(S, T)

as described on slide 70. [Tedious!—maybe just do a bit.]

Exercise 7. Try Tripos question 2001.3.9. [This is the Turing machine version of 2000.3.9.]

Exercise 8. Try Tripos question 1996.3.9.

Exercise 9. Show that the following functions are all primitive recursive.

(a) Exponentiation, exp(x, y) , xy.

(b) Truncated subtraction, minus(x, y) ,

{

x − y if x ≥ y

0 if x < y

(c) Conditional branch on zero, ifzero(x, y, z) ,

{

y if x = 0

z if x > 0

(d) Bounded summation: if f ∈ N
n+1

�N is primitive recursive, then so is g ∈ N
n+1

�N

where

g(~x, x) ,

0 if x = 0

f (~x, 0) if x = 1

f (~x, 0) + · · ·+ f (~x, x − 1) if x > 1.

Exercise 10. Recall the definition of Ackermann’s function ack from slide 102. Sketch how
to build a register machine M that computes ack(x1, x2) in R0 when started with x1 in R1
and x2 in R2 and all other registers zero. [Hint: here’s one way; the next question steers you
another way to the computability of ack. Call a finite list L = [(x1, y1, z1), (x2, y2, z2), . . .] of
triples of numbers suitable if it satisfies

(i) if (0, y, z) ∈ L, then z = y + 1

(ii) if (x + 1, 0, z) ∈ L, then (x, 1, z) ∈ L

(iii) if (x + 1, y + 1, z) ∈ L, then there is some u with (x + 1, y, u) ∈ L and (x, u, z) ∈ L.

The idea is that if (x, y, z) ∈ L and L is suitable then z = ack(x, y) and L contains all the triples
(x′, y′, ack(x, , y′)) needed to calculate ack(x, y). Show how to code lists of triples of numbers
as numbers in such a way that we can (in principle, no need to do it explicitly!) build a
register machine that recognizes whether or not a number is the code for a suitable list of
triples. Show how to use that machine to build a machine computing ack(x, y) by searching
for the code of a suitable list containing a triple with x and y in it’s first two components.]

Exercise 11. If you are not already fed up with Ackermann’s function, try Tripos question
2001.4.8.

Exercise 12. If you are still not fed up with Ackermann’s function ack ∈ N
2
�N, show that

the λ-term ack , λx. x (λ f y. y f (f 1)) Succ represents ack (where Succ is as on slide 123).

Exercise 13. Let I be the λ-term λx. x. Show that nI =β I holds for every Church numeral n.
Now consider

B , λ f g x. g x I (f (g x))

Assuming the fact about normal order reduction mentioned on slide 115, show that if partial
functions f , g ∈ N⇀N are represented by closed λ-terms F and G respectively, then their
composition (f ◦ g)(x) ≡ f (g(x)) is represented by B F G. Now try Tripos question 2005.5.12.

