Topic 6

Computer Networking

Lent Term M/W/F 11-midday
LT1 in Gates Building

Slide Set 6
Andrew W. Moore

andrew.moore@cl.cam.ac.uk
February 2014

28/02/2014

Topic 6 — Applications

* Overview

* Traditional Applications (web)
¢ Infrastructure Services (DNS)

* Multimedia Applications (SIP)

* P2P Networks

Client-server architecture

server:
— always-on host
— permanent IP address

— server farms for scaling
clients:

— communicate with server

— may be intermittently connected

— may have dynamic IP addresses

— do not communicate directly
with each other

Pure P2P architecture

no always-on server

arbitrary end systems
directly communicate

peers are intermittently
connected and change IP
addresses

Highly scalable but difficult to
manage

peer-peer

=,

n

00
(O \)

(95:
oy
8 %0

Hybrid of client-server and P2P

Skype
— voice-over-IP P2P application
— centralized server: finding address of remote
party:
— client-client connection: direct (not through
server)
Instant messaging
— chatting between two users is P2P
— centralized service: client presence detection/
location
« user registers its IP address with central server
when it comes online
. userdgontacts central server to find IP addresses of
uaaies

Addressing processes

* to receive messages,
process must have
identifier

* host device has unique 32-
bit IP address

* Q:does IPaddress of host
on which process runs
suffice for identifying the
process?

— A: No, many processes
can be running on same
host

identifier includes both IP
address and port numbers
associated with process on
host.

Example port numbers:

— HTTP server: 80

— Mail server: 25

to send HTTP message to
yuba.stanford.edu web
server:

— IP address: 171.64.74.58

— Port number: 80

more shortly...

Topic 6

28/02/2014

Recall: Multiplexing is a service
provided by (each) layer too!

Multiplexing { [Demultipexing

Lower channel
Application: one web-server multiple sets of content
Host: one machine multiple services
Network: one physical box multiple addresses (like vns.cl.cam.ac.uk)
UNIX: /etc/protocols = examples of different transport-protocols on top of IP

UNIX: /etc/services = examples of different (TCP/UDP) services — by port

(THESE FILES ARE EXAMPLES OF NAME SERVICES)

App-layer protocol defines

Types of messages Public-domain protocols:

exchanged, + defined in RFCs

— e, request, response + allows for interoperability

Message syntax: + e.g., HTTP, SMTP
— what fields in messages &

how fields are delineated Proprietary protocols:

Message semantics * e.g., Skype

— meaning of information in
fields

Rules for when and how

processes send & respond

to messages

What transport service does an app need?

Data loss Throughput) .)
. O some apps (e.g., multimedia) require
¢ some apps (e.g., aUdlo) can minimum amount of throughput to be
tolerate some loss “effective”
R . 3 other apps (“elastic apps”) make use of
other apps (e.g., file transfer,
A N whatever throughput they get
telnet) require 100% reliable Security

data transfer [Encryption, data integrity, ...

Timing Mysterious secret of Transport

« There is more than sort of transport layer
* some apps (e.g., Internet

telephony, interactive Shocked?
games) require low delay I seriously doubt it...

to be “effective”
Recall the two most common TCP and UDP

Naming

Internet has one global system of addressing: IP
— By explicit design

And one global system of naming: DNS
— Almost by accident

At the time, only items worth naming were hosts
— A mistake that causes many painful workarounds

Everything is now named relative to a host
— Content is most notable example (URL structure)

Logical Steps in Using Internet

* Human has name of entity she wants to access
— Content, host, etc.

* Invokes an application to perform relevant task
— Using that name

* App invokes DNS to translate name to address

* App invokes transport protocol to contact host
— Using address as destination

Addresses vs Names

Scope of relevance:
— App/user is primarily concerned with names
— Network is primarily concerned with addresses
Timescales:
— Name lookup once (or get from cache)
— Address lookup on each packet
When moving a host to a different subnet:
— The address changes
— The name does not change
When moving content to a differently named host
— Name and address both change!

Relationship Between
Names&Addresses

* Addresses can change underneath
— Move www.bbc.co.uk to 212.58.246.92
— Humans/Apps should be unaffected

* Name could map to multiple IP addresses
— www.bbc.co.uk to multiple replicas of the Web site
— Enables
* Load-balancing
* Reducing latency by picking nearby servers

e Multiple names for the same address
— E.g., aliases like www.bbc.co.uk and bbc.co.uk

— Mnemonic stable name, and dynamic canonical name
« Canonical name = actual name of host

28/02/2014

Mapping from Names to Addresses

* Originally: per-host file /etc/hosts
— SRI (Menlo Park) kept master copy
— Downloaded regularly
— Flat namespace

* Single server not resilient, doesn’t scale
— Adopted a distributed hierarchical system

* Two intertwined hierarchies:
— Infrastructure: hierarchy of DNS servers
— Naming structure: www.bbc.co.uk

Domain Name System (DNS)

Top of hierarchy: Root
— Location hardwired into other servers

Next Level: Top-level domain (TLD) servers
— .com, .edu, etc.

— .uk, .au, .to, etc.

— Managed professionally

Bottom Level: Authoritative DNS servers
— Actually do the mapping
— Can be maintained locally or by a service provider

Distributed Hierarchical Database

unnamed root

if---‘ ® - @@\Q

generic domains country domams
Top-Level Domains (TLDs)

m3 east. bar edu cl.cam.ac. uk

DNS Root

¢ Located in Virginia, USA
¢ How do we make the root scale?

Verisign, Dulles, VA

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)
— Labeled A through M
* Does this scale?

A Verisign, Dulles, VA

C Cogent, Herndon, VA

D U Maryland College Park, MD

G US DoD Vienna, VA KRIPE London
H ARL Aberdeen, MD

1 Verisign

| Autonomica, Stockholm

E NASA Mt View, CA
F Internet Software

Consortium

Palo Alto, CA
B USC-ISI Marina del Rey, CA
LICANN Los Angeles, CA

M WIDE Tokyo

18

DNS Root Servers

* 13 root servers (see http://www.root-servers.org/)

— Labeled A through M
* Replication via any-casting (localized routing for addresses)

A Verisign, Dulles, VA
C Cogent, Herndon, VA (also Los Angeles, NY, Chicago)
D U Maryland College Park, MD

G US DoD Vienna, VA

H ARL Aberdeen, MD

1 Verisign (21 locations)

K RIPE London (plus 16 other locations)

I Autonomica, Stockholm (plus

ther locations)
E NASA Mt View, CA

F Internet Software ""

Consortium,

Palo Alto, CA \ 4

M WIDE Tokyo
plus Seoul, Paris,

(and 37 other locations) San Francisco

B USC-ISI Marina del Rey, CA
LICANN Los Angeles, CA ‘

19

28/02/2014

Using DNS

¢ Two components
— Local DNS servers
— Resolver software on hosts

* Local DNS server (“default name server”)
— Usually near the endhosts that use it

— Local hosts configured with local server (e.g., /etc/
resolv.conf) or learn server via DHCP

 Client application
— Extract server name (e.g., from the URL)
— Do gethostbyname() to trigger resolver code

How Does Resolution Happen?
(Iterative example)

root DNS server
Hostatcl.cam.ac.uk
wants IP address for
www.stanford.edu 3
TLD DNS server
local DNS server
dns.cam.ac.uk
iterated query.
0 Host enquiry is delegated
to local DNS server

0 Consider
transactions 2 — 7 only 1
O contacted server replies
with name of next server @ authoritative DNS server
to contact dns.stanford.edu

7 “I don’t know this name, requesting host
but ask this server” cl.cam.ac.uk

@ www . stanford. edu
21

DNS name resolution recursive example

root DNS server

[puts burden of name
resolution on contacted e
name server 3'

O heavy load? |
local DNS server

dns.cam.ac.uk
1 8
authoritative DNS server
dns.stanford.edu
requesting host
cl.cam.ac.uk

www.stanford.edu

TLD DNS server

22

Recursive and lterative Queries - Hybrid case

root DNS server

* Recursive query

— Ask server to get
answer for you 3

— E.g., requests 1,2
and responses) L 5
Site DNS server [P
9,10 dns.cam.ac.uk
* Iterative query 5
— Ask server who Site DNS server

TLD DNS server

to ask next dns.cam.ac.uk 1
1 10
—E.g., all other authoritative DNS server
request- dns. stanford.edu

response pairs
requesting host
23 my-host.cl.cam.ac.uk

DNS Caching

* Performing all these queries takes time
— And all this before actual communication takes place
— E.g., 1-second latency before starting Web download
* Caching can greatly reduce overhead
— The top-level servers very rarely change
— Popular sites (e.g., www.bbc.co.uk) visited often
— Local DNS server often has the information cached
How DNS caching works
— DNS servers cache responses to queries
— Responses include a “time to live” (TTL) field
— Server deletes cached entry after TTL expires

Topic 6

Negative Caching

* Remember things that don’ t work
— Misspellings like bbcc.co.uk and www.bbc.com.uk
— These can take a long time to fail the first time
— Good to remember that they don’t work
— ... so the failure takes less time the next time around

* But: negative caching is optional
— And not widely implemented

25

28/02/2014

Reliability

* DNS servers are replicated (primary/secondary)
— Name service available if at least one replica is up
— Queries can be load-balanced between replicas
Usually, UDP used for queries
— Need reliability: must implement this on top of UDP
— Spec supports TCP too, but not always implemented
* Try alternate servers on timeout

— Exponential backoff when retrying same server
* Same identifier for all queries

— Don’t care which server responds

DNS Measurements (miT data from 2000)

* What is being looked up?
— ~60% requests for A records
— ~25% for PTR records
— ~5% for MX records
— ~6% for ANY records

* How long does it take?
— Median ~100msec (but 90t percentile ~500msec)

— 80% have no referrals; 99.9% have fewer than four

* Query packets per lookup: ~2.4
— But this is misleading....

27

DNS Measurements (miT data from 2000)

* Does DNS give answers?
— ~23% of lookups fail to elicit an answer!
— ~13% of lookups result in NXDOMAIN (or similar)
* Mostly reverse lookups
— Only ~64% of queries are successful!
* How come the web seems to work so well?

* ~63% of DNS packets in unanswered queries!
— Failing queries are frequently retransmitted
— 99.9% successful queries have <2 retransmissions

DNS Measurements (miT data from 2000)

* Top 10% of names accounted for ~70% of lookups
— Caching should really help!

* 9% of lookups are unique

— Cache hit rate can never exceed 91%

* Cache hit rates ~ 75%

— But caching for more than 10 hosts doesn’t add much

29

A Common Pattern.....

* Distributions of various metrics (file lengths, access
patterns, etc.) often have two properties:

— Large fraction of total metric in the top 10%
— Sizable fraction (~10%) of total fraction in low values

* Not an exponential distribution
— Large fraction is in top 10%
— But low values have very little of overall total

* Lesson: have to pay attention to both ends of dist.
* Here: caching helps, but not a panacea

Moral of the Story

noticing it!

and this is a good thing

28/02/2014

* If you design a highly resilient system, many
things can be going wrong without you

Cache Poisoning, a badness story

* Suppose you are a Bad Guy and you control
the name server for foobar.com. You receive a

e 1 £ L -l 1

;; QUESTION SECTION:
;www.foobar.com. IN A

;; ANSWER SECTION:

www.foobar.com. 300 IN 212.44.9.144
;3 AUTHORITY SECTION:

foobar.com. 600 NS dnsl.foobar.com.
foobar.com. 600 NS google.com.

;; ADDITIONAL SEC
google.com.

3 A foobar.com machine, not google.com

DNS and Security

* No way to verify answers
— Opens up DNS to many potential attacks
— DNSSEC fixes this

— And can return whatever values it wants

More subtle attack: Cache poisoning
— Those “additional” records can be anything!

* Most obvious vulnerability: recursive resolution
— Using recursive resolution, host must trust DNS server
— When at Starbucks, server is under their control

Why is the web so successful?

What do the web, youtube, fb have in common?
— The ability to self-publish

* Self-publishing that is easy, independent, free

* No interest in collaborative and idealistic endeavor
— People aren’t looking for Nirvana (or even Xanadu)
— People also aren’t looking for technical perfection

* Want to make their mark, and find something neat
— Two sides of the same coin, creates synergy
— “Performance” more important than dialogue....

Web Components

Infrastructure:
— Clients
— Servers
— Proxies

* Content:
— Individual objects (files, etc.)
— Web sites (coherent collection of objects)

* Implementation
— HTML: formatting content
— URL: naming content

— HTTP: protocol for exchanging content
Any content not just HTML!

Topic 6

HTML: HyperText Markup Language

* A Web page has:
— Base HTML file
— Referenced objects (e.g., images)

* HTML has several functions:
— Format text
— Reference images
— Embed hyperlinks (HREF)

Topic 6

URL Syntax

protocol : //hostname] : port] /directorypath /resource

28/02/2014

protocol http, ftp, https, smtp, rtsp, etc.

hostname DNS name, IP address

port Defaults to protocol’ s standard port
e.g. http: 80 https: 443

directory path Hierarchical, reflecting file system

resource Identifies the desired resource

Can also extend to program executions:
http://us.f413.mail.yahoo.com/ym/ShowLetter?box=
%40B
$40BulksMsgId=2604_1744106_29699_ 1123 1261 _0_28917
_3552_1289957100&Search=&Nhead=f&YY=31454&0order=do
wn&sort=date&pos=0&view=a&head=b

HyperText Transfer Protocol (HTTP)

* Request-response protocol

* Reliance on a global namespace
* Resource metadata

* Stateless

ASCII format

$ telnet www.cl.cam.ac.uk 80
GET /~awm22/win HTTP/1.0
<blank line, i.e., CRLF>

Steps in HTTP Request

HTTP Client initiates TCP connection to server

— SYN

— SYNACK

— ACK

Client sends HTTP request to server

— Can be piggybacked on TCP’s ACK

HTTP Server responds to request

Client receives the request, terminates connection
TCP connection termination exchange

How many RTTs for a single request?

Client-Server Communication

* two types of HTTP messages: request, response
* HTTP request message: (GET POST HEAD)

e

GET /somedir/page.html HTTR/1.1
Host: www.someschool .edu
User-agent: Mozilla/4.0
Connection: close
* | Accept-language: £r

EAD commands

HTTP response message

—_

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 ...
Content-Length: 6821

Content-Type: text/html

(extra carriage return, line feed)

data data data data data

40

41

Different Forms of Server

 Response
Return a file

— URL matches a file (e.g., /www/index.html)
— Server returns file as the response
— Server generates appropriate response header

Generate response dynamically
— URL triggers a program on the server

— Server runs program and sends output to client

Return meta-data with no body

HTTP Resource Meta-Data

Meta-data
— Info about a resource, stored as a separate entity

Examples:

— Size of resource, last modification time, type of
content

* Usage example: Conditional GET Request
— Client requests object “If-modified-since”
— If unchanged, “HTTP/1.1 304 Not Modified”
— No body in the server’s response, only a header

HTTP is Stateless

* Each request-response treated independently
— Servers not required to retain state

* Good: Improves scalability on the server-side
— Failure handling is easier
— Can handle higher rate of requests
— Order of requests doesn‘t matter

* Bad: Some applications need persistent state

— Need to uniquely identify user or store temporary info
— e.g., Shopping cart, user profiles, usage tracking, ...

43

28/02/2014

State in a Stateless Protocol:

Cookies

* Client-side state maintenance

— Client stores small~ state on behalf of server

— Client sends state in future requests to the server
« Can provide authentication

Request

__/ Response

L Set-Cookie: XYZ |

— Request
Cookie: XY

HTTP Performance

* Most Web pages have multiple objects
—e.g., HTML file and a bunch of embedded images

* How do you retrieve those objects (naively)?
— One item at a time

* Put stuff in the optimal place?
— Where is that precisely?
* Enter the Web cache and the CDN

45

Fetch HTTP Items: Stop & Wait

Client Server
Start fetching .
page - Request item 1
. =
Transfer item 1 §
o
kﬂwz//‘
Request ji
% 22 RTTs
k//T;ansf/eri@W” o
t
Finish; display odjec
RN
page

Improving HTTP Performance:

Concurrent Requests & Responses

* Use multiple connections in 15
parallel '!,4

* Does not necessarily maintain

order of responses N R2 R3

T2 73

e Client=© .y

e Server=0©

* Network = ® Why?

e

47

Improving HTTP Performance:

Pipelined Requests & Responses

* Batch requests and responses
— Reduce connection overhead Client Server

— Multiple requests sent in a single Request 1
batch \Re?\,uu\}.

— Maintains order of responses \Requeng\‘

— Item 1 always arrives before item 2
* How is this different from ‘W
concurrent requests/responses? W

) . 3
— Single TCP connection W

Topic 6

Improving HTTP Performance:

Persistent Connections

* Enables multiple transfers per connection
— Maintain TCP connection across multiple requests
— Including transfers subsequent to current page
— Client or server can tear down connection

* Performance advantages:
— Avoid overhead of connection set-up and tear-down
— Allow TCP to learn more accurate RTT estimate
— Allow TCP congestion window to increase
— i.e., leverage previously discovered bandwidth

e Defaultin HTTP/1.1

49

28/02/2014

HTTP evolution

1.0 — one object per TCP: simple but slow

Parallel connections - multiple TCP, one object
each: wastes b/w, may be svr limited, out of order
1.1 pipelining — aggregate retrieval time: ordered,
multiple objects sharing single TCP

1.1 persistent — aggregate TCP overhead: lower

overhead in time, increase overhead at ends (e.g.,
when should/do you close the connection?)

Scorecard: Getting n Small Objects

Time dominated by latency

* One-at-a-time: ~2n RTT

* Persistent: ~ (n+1)RTT

* M concurrent: ~2[n/m] RTT
* Pipelined: ~2 RTT

* Pipelined/Persistent: ~2 RTT first time, RTT
later

Scorecard: Getting n Large Objects

Time dominated by bandwidth

* One-at-a-time: ~ nF/B
* M concurrent: ~ [n/m] F/B

— assuming shared with large population of users
* Pipelined and/or persistent: ~ nF/B

— The only thing that helps is getting more
bandwidth..

Improving HTTP Performance:

Caching

* Many clients transfer same information

— Generates redundant server and network
load

— Clients experience unnecessary latency

Backisone ISP

Improving HTTP Performance:

Caching: How

* Modifier to GET requests:

— If-modified-since — returns “not modified” if
resource not modified since specified time

* Response header:
- Expires —how long it’s safe to cache the resource

—No-cache —ignore all caches; always get resource
directly from server

Improving HTTP Performance:

Caching: Why

* Motive for placing content closer to client:
— User gets better response time
— Content providers get happier users
* Time is money, really!
— Network gets reduced load

* Why does caching work?
— Exploits locality of reference

* How well does caching work?
— Very well, up to a limit
— Large overlap in content
— But many unique requests

28/02/2014

Improving HTTP Performance:

Caching on the Client

Example: Conditional GET Request
« Return resource only if it has changed at the server
Requet U5 SRIYRSsEgsources!
GET /~awm22/win HTTP/1.1
Host: www.cl.cam.ac.uk
User-Agent: Mozilla/4.03
If-Modified-Since: Sun, 27 Aug 2006 22:25:50 GMT

* How?
— Client specifies “if-modified-since” time in request
— Server compares this against “last modified” time of desired resource
— Server returns “304 Not Modified” if resource has not changed
— ...ora“200 OK” with the latest version otherwise

Improving HTTP Performance:

Caching with Reverse Proxies

Cache documents close to server
-> decrease server load

« Typically done by content providers

* Only works for static(*) content

(*) static can also be snapshots
of dynamic content

Reverse proxies

Backbone ISP

JClients 75

Improving HTTP Performance:

Caching with Forward Proxies

Cache documents close to clients
- reduce network traffic and decrease latency

* Typically done by ISPs or corporate LANs

Server

Reverse proxies

Forward proxies

Clients o=
58 CHE

Improving HTTP Performance:

Caching w/ Content Distribution Networks

* Integrate forward and reverse caching functionality
— One overlay network (usually) administered by one entity
— e.g., Akamai
* Provide document caching
— Pull: Direct result of clients’ requests
— Push: Expectation of high access rate
* Also do some processing
— Handle dynamic web pages
— Transcoding
— Maybe do some security function — watermark IP

Improving HTTP Performance:

Caching with CDNs (cont.)

Server

Forward proxies

Clients J=gh

10

Topic 6

Improving HTTP Performance:

CDN Example — Akamai

* Akamai creates new domain names for each client
content provider.
— €.8., a128.g.akamai.net

* The CDN’s DNS servers are authoritative for the new
domains

The client content provider modifies its content so
that embedded URLs reference the new domains.
— “Akamaize” content

— €.8.: http://www.bbc.co.uk/popular-image.jpg becomes http:;//
a128.g.akamai.net/popular-image.jpg

* Requests now sent to CDN'’s infrastructure...

28/02/2014

Hosting: Multiple Sites Per
Machine

Multiple Web sites on a single machine
— Hosting company runs the Web server on behalf of
multiple sites (e.g., www.foo.com and www.bar.com)
* Problem: GET /index.html
— www.foo.com/index.html OF www.bar.com/index.html?
* Solutions:
— Multiple server processes on the same machine
* Have a separate IP address (or port) for each server
— Include site name in HTTP request
+ Single Web server process with a single IP address
« Clientincludes “Host” header (e.g., Host: www.£foo.com)
* Required header with HTTP/1.1

Hosting: Multiple Machines Per Site

* Replicate popular Web site across many machines
— Helps to handle the load
— Places content closer to clients

* Helps when content isn’t cacheable
* Problem: Want to direct client to particular
replica

— Balance load across server replicas
— Pair clients with nearby servers

63

Multi-Hosting at Single Location

* Single IP address, multiple machines
— Run multiple machines behind a single IP address

_— Load Balancer }—

/' 64.236.16.20

— Ensure all packets from a single
TCP connection go to the same replica

Multi-Hosting at Several Locations

* Multiple addresses, multiple machines
— Same name but different addresses for all of the replicas
— Configure DNS server to return closest address

6373.72.54.131

CDN examples round-up

* CDN using DNS
DNS has information on loading/distribution/location

* CDN using anycast
same address from DNS name but local routes

* CDN based on rewriting HTML URLs
(akami example just covered — akami uses DNS too)

11

28/02/2014

SIP — Session Initiation Protocol

Session?

Anyone smell an OSI / 1SO standards document burning?

SIP - VolIP

cisco.com princeton.edu
proxy proxy

bsd-pc.cisco.com lip-ph.cs.princeton.edu

larry@princeton.edu

bruce@cisco.com

Establishing communication
through SIP proxies.

SIP?

* SIP — bringing the fun/complexity of
telephony to the Internet
—User location
—User availability
—User capabilities
—Session setup

—Session management
* (e.g. “call forwarding”)

H.323-1TU

* Why have one standard when there are at least two....

* The full H.323 is hundreds of pages

— The protocol is known for its complexity —an ITU hallmark

« SIPis not much better

— |ETF grew up and became the ITU....

70

Topic 6

Multimedia Applications

cisoo.com princeton.edu

bsd-pe.cisco.com proxy Tlp-ph.cs princeton.edu

—_invite

100tying |

180ringing "

2000k

80ringing____*~

AcK

< o >
Bve 4
T e

Message flow for a basic SIP session

The (still?) missing piece:
Resource Allocation for Multimedia Applications

router
er Public
= Internet

’g an
Customer

1P phone router

| can ‘differentiate’ VoIP from data but...
| can only control data going into the Internet

72

12

Topic 6

Multimedia ApJollcations

* Resource Allocation for Multimedia Applications

Proxy or gatekeeper

Wide area

’%_L\‘% Head office

IP phones at
branch office

Admission control using session control protocol.

28/02/2014

Resource Allocation for Multimedia Applications

Coming soon...

Who are we kidding??

Co-ordination of SIP signaling and
resource reservation.

So where does it happen? g i

Inside single institutions or domains of control.....
(Universities, Hospitals, big corp...)

What about my aDSL/CABLE/etc it combines voice and data?
Phone company controls the multiplexing on the line
and throughout their own network too......

74

P2P — efficient network use that
annoys the ISP

Pure P2P architecture

no always-on server
arbitrary end systems
directly communicate

3
peer-peer S o)
peers are intermittently
connected and change IP
addresses

— File distribution g
— Searching for information p=] Dﬁ
— Case Study: Skype

76

File Distribution: Server-Client vs P2P

Question : How much time to distribute file from
one server to N peers?

u,: server upload

bandwidth
Server @
u;: peer i upload
i u bandwidth
u; 1 2 d.
U S d,: peer i download
File, size F bandwidth
Network (with o
abundant bandwidth)

LI
v .

File distribution time: server-client

Server
server sequentially R‘, u//
sends N copies:
— NF/u time @di gsxgz:t(\g::dwidth) ¢
client i takes F/d, B .
time to download ‘e, .

Time to distribute F

to N clients using = d, = max { NF/u,, F/mm(d) }
client/server approach

increases linearly in N

(for large N) %

13

Topic 6

28/02/2014

File distribution time: P2P

Server
- B
server must send one copy: 4 u
. Z/
F/u time u 41\ \ a4 4

client i takes F/d; time to Netwark (with

q
download @_L; abundant bandwidth) ¢
NF bits must be oS .
downloaded (aggregate) ., .

0 fastest possible upload rate: u + Zu‘

dpyp = max { F/u, F/min(d;) , NF/(u, + Zu)) }
1

Server-client vs. P2P: example

Client upload rate = u, F/u=1hour, u;=10u, d_;, 2 u,

min =

35

o ,|[=PeP o
£ s Client-Server| /
IS
g L
2 2
a 15
3 J’/ﬂ
E ' L
€ W
s 05

0 T T T T T T

0 5 10 15 20 25 30 35
N

File distribution: BitTorrent*
*rather old BitTorrent
0 P2P file distribution
torrent: group of

peers exchanging
chunks of a file

tracker: tracks peers
participating in torrent

U trading
chunks

e 4

obtain list
of peers

i

BitTorrent (1)

x4

« file divided into 256KB chunks.
* peer joining torrent: Q::'g\ g

— has no chunks, but will accumulate them over time

— registers with tracker to get list of peers, connects to
subset of peers (“neighbors”)

* while downloading, peer uploads chunks to other peers.
* peers may come and go
* once peer has entire file, it may (selfishly) leave or

(altruistically) remain

BitTorrent (2)

Sending Chunks: tit-for-tat
O Alice sends chunks to four neighbors

Pulling Chunks

* atany given time, different currently sending her chunks at the
peers have different highest rate
. % re-evaluate top 4 every 10 secs
subsets of file chunks T every 30 secs: randomly select another

peer, starts sending chunks
< newly chosen peer may join top 4
% “optimistically unchoke”

* periodically, a peer (Alice)
asks each neighbor for list
of chunks that they have.

* Alice sends requests for her
missing chunks

— rarest first

BitTorrent: Tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob” s top-four providers; Bob reciprocates

(3) Bob becomes one of Alice’ s top-four providers

f’ With higher upload rate,
can find better trading

@ partners & get file faster!
84

14

Topic 6

Distributed Hash Table (DHT)

* DHT = distributed P2P database
* Database has (key, value) pairs;
— key: ss number; value: human name
— key: content type; value: IP address
* Peers query DB with key
— DB returns values that match the key
* Peers can also insert (key, value) peers

28/02/2014

P2P Case study: Skype

Skype clients (SC)

inherently P2P: pairs of @ 28 B

users communicate.

proprietary application- Skype

layer protocol (inferred login server

via reverse engineering))
hierarchical overlay with gw
SNs oS

Index maps usernames to i‘i/ KVX
IP addresses; distributed "4
over SNs S

Peers as relays

* Problem when both Alice
and Bob are behind
”

— NAT prevents an outside peer
from initiating a call to insider
peer

* Solution:

— Using Alice’ s and Bob’ s SN,
Relay is chosen

— Each peer initiates session
with relay.

— Peers can now communicate
through NATs via relay

Distributed Hash Table (DHT)

DHT = distributed P2P database
Database has (key, value) pairs;

— key: ss number; value: human name

— key: content type; value: IP address
Peers query DB with key

— DB returns values that match the key
Peers can also insert (key, value) peers

DHT Identifiers

* Assign integer identifier to each peer in range
[0,2"-1].
— Each identifier can be represented by n bits.
* Require each key to be an integer in same range.
* To get integer keys, hash original key.
— eg, key = h(“Game of Thrones season 4”)
— This is why they call it a distributed “hash” table

How to assign keys to peers?

Central issue:

— Assigning (key, value) pairs to peers.

Rule: assign key to the peer that has the
closest ID.

Convention in lecture: closest is the
immediate successor of the key.

Ex: n=4; peers: 1,3,4,5,8,10,12,14;

—key = 13, then successor peer =14

—key = 15, then successor peer =1

15

28/02/2014

Circular DHT (1)

15

12

10
8

* Each peer only aware of immediate successor

and predecessor.
“Overlay network”

O(N) messages 0001
on avg to resolve
query, when there

Circle DHT (2)

Circular DHT with Shortcuts
1

Who' s resp
for key 1110?

10
8
Each peer keeps track of IP addresses of predecessor, successor,
short cuts.
Reduced from 6 to 2 messages.
Possible to design shortcuts so O(log N) neighbors, O(log N)
messages in query

are N peers
111
0100
1100
0101
Define closest
1010
as closest 1000
successor
*To handle peer churn, require
3 each peer to know the IP address
15 of its two successors.
« Each peer periodically pings its
4 two successors to see if they
12 are still alive.
5
10
8

Peer 5 abruptly leaves

Peer 4 detects; makes 8 its immediate successor; asks 8
who its immediate successor is; makes 8’ s immediate
successor its second successor.

What if peer 13 wants to join?

Topic 6

Summary.

* Apps need protocols too

* We covered examples from
— Traditional Applications (web)
— Scaling and Speeding the web (CDN/Cache tricks)

Infrastructure Services (DNS)
— Cache and Hierarchy

Multimedia Applications (SIP)
— Extremely hard to do better than worst-effort

P2P Network examples

16

