Computer Networking

Lent Term M/W/F 11-midday LT1 in Gates Building

Slide Set 4

Andrew W. Moore

andrew.moore@cl.cam.ac.uk February 2014

Topic 5a – Transport

Our goals:

- understand principles behind transport layer services:
 - multiplexing/ demultiplexing
 - reliable data transfer
 - flow control
 - congestion control
- learn about transport layer protocols in the Internet:
 - UDP: connectionless transport
 - TCP: connection-oriented
 - transport

 TCP congestion control

Transport Layer

Commonly a layer at end-hosts, between the application and network layer

Why a transport layer?

- IP packets are addressed to a host but end-toend communication is between application processes at hosts
 - Need a way to decide which packets go to which applications (more multiplexing)

Why a transport layer?

Why a transport layer?

Physical

Application

Transport

Network

Datalink

Host B

Host A

Why a transport layer?

- IP packets are addressed to a host but end-to-enc communication is between application processes at hosts
 - Need a way to decide which packets go to which applications (mux/demux)
- IP provides a weak service model (best-effort)
 - Packets can be corrupted, delayed, dropped, reordered, duplicated
 - No guidance on how much traffic to send and when
 - Dealing with this is tedious for application developers

Role of the Transport Layer

- Communication between application processes
 - Multiplexing between application processes
 - Implemented using ports

9

Role of the Transport Layer

- Communication between application processes
- Provide common end-to-end services for app layer [optional]
 - Reliable, in-order data delivery
 - Paced data delivery: flow and congestion-control
 - $\bullet\,$ too fast may overwhelm the network
 - too slow is not efficient

10

Role of the Transport Layer

- Communication between processes
- Provide common end-to-end services for app layer [optional]
- TCP and UDP are the common transport protocols
 - also SCTP, MTCP, SST, RDP, DCCP, ...

11

Role of the Transport Layer

- Communication between processes
- Provide common end-to-end services for app layer [optional]
- TCP and UDP are the common transport protocols
- UDP is a minimalist, no-frills transport protocol
 - only provides mux/demux capabilities

12

Role of the Transport Layer

- · Communication between processes
- · Provide common end-to-end services for app layer [optional]
- TCP and UDP are the common transport protocols
- UDP is a minimalist, no-frills transport protocol
- TCP is the totus porcus protocol
 - offers apps a reliable, in-order, byte-stream abstraction
 - with congestion control
 - but **no** performance (delay, bandwidth, ...) guarantees

Role of the Transport Layer

- · Communication between processes
 - mux/demux from and to application processes
 - implemented using ports

Context: Applications and Sockets

- Socket: software abstraction by which an application process exchanges network messages with the (transport layer in the) operating system
 - socketID = socket(..., socket.TYPE)
 - socketID.sendto(message, ...)
 - socketID.recvfrom(...)
- Two important types of sockets
 - UDP socket: TYPE is SOCK_DGRAM
 - TCP socket: TYPE is SOCK_STREAM

Ports

- Problem: deciding which app (socket) gets which packets
- Solution: port as a transport layer identifier
- 16 bit identifier
- OS stores mapping between sockets and ports
- a packet carries a source and destination port number in its transport layer header
- For UDP ports (SOCK_DGRAM)
 OS stores (local port, local IP address) ←→ socket
- For TCP ports (SOCK_STREAM)
 - OS stores (local port, local IP, remote port, remote IP) ←→ socket

4-bit Version 4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)		
16-bit Identification		3-bit Flags	13-bit Fragment Offset	
8-bit Time to Live (TTL)	8-bit Protocol 16-bit Header Checksum			
32-bit Source IP Address				
32-bit Destination IP Address				
Options (if any)				
	IP Payload			

Recap: Multiplexing and Demultiplexing

- · Host receives IP packets
 - Each IP header has source and destination IP address
 - Each Transport Layer header has source and destination port number
- Host uses IP addresses and port numbers to direct the message to appropriate socket

21

More on Ports

- Separate 16-bit port address space for UDP and TCP
- "Well known" ports (0-1023): everyone agrees which services run on these ports
 - e.g., ssh:22, http:80
 - helps client know server's port
- Ephemeral ports (most 1024-65535): dynamically selected: as the source port for a client process

22

UDP: User Datagram Protocol

- Lightweight communication between processes
 - Avoid overhead and delays of ordered, reliable delivery
- UDP described in RFC 768 (1980!)
 - Destination IP address and port to support demultiplexing
 - Optional error checking on the packet contents
 - (checksum field of 0 means "don't verify checksum")

SRC port	DST port			
checksum	length			
DATA				

Why a transport layer?

- IP packets are addressed to a host but end-to end communication is between application processes at hosts
 - Need a way to decide which packets go to which applications (mux/demux)
- IP provides a weak service model (best-effort)
 - Packets can be corrupted, delayed, dropped, reordered, duplicated

24

Rdt2.0: channel with bit errors • underlying channel may flip bits in packet - checksum to detect bit errors • the question: how to recover from errors: - acknowledgements (ACKs): receiver explicitly tells sender that packet received is OK - negative acknowledgements (NAKs): receiver explicitly tells sender that packet had errors - sender retransmits packet on receipt of NAK • new mechanisms in rdt2.0 (beyond rdt1.0): - error detection - receiver feedback: control msgs (ACK,NAK) receiver->sender

rdt2.0 has a fatal flaw!

What happens if ACK/NAK corrupted?

- sender doesn't know what happened at receiver!
- can't just retransmit: possible duplicate

Handling duplicates:

- sender retransmits current packet if ACK/NAK garbled
- sender adds sequence number to each packet
- receiver discards (doesn't deliver) duplicate packet

stop and wait

Sender sends one packet, then waits for receiver response

37

rdt2.1: discussion

Sender:

- seq # added to pkt
- two seq. #' s (0,1) will suffice. Why?
- must check if received ACK/ NAK corrupted
- twice as many states
 state must "remember"
 whether "current" pkt has a
 0 or 1 sequence number

Receiver:

- must check if received packet is duplicate
 - state indicates whether 0 or 1 is expected pkt seq #
- note: receiver can not know if its last ACK/NAK received OK at sender

41

rdt2.2: a NAK-free protocol

- same functionality as rdt2.1, using ACKs only
- instead of NAK, receiver sends ACK for last pkt received OK
 receiver must explicitly include seq # of pkt being ACKed
- duplicate ACK at sender results in same action as NAK: retransmit current pkt

42

Performance of rdt3.0

- rdt3.0 works, but performance stinks
- ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

$$d_{trans} = \frac{L}{R} = \frac{8000 \text{bits}}{10^9 \text{bps}} = 8 \text{ microseconds}$$

O U sender: utilization – fraction of time sender busy sending

$$U_{sender} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- O 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
- o network protocol limits use of physical resources!

49

Pipelined (Packet-Window) protocols Pipelining: sender allows multiple, "in-flight", yet-to-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

51

A Sliding Packet Window

- window = set of adjacent sequence numbers
 - The size of the set is the window size; assume window size is n
- General idea: send up to *n* packets at a time
 - Sender can send packets in its window
 - Receiver can accept packets in its window
 - Window of acceptable packets "slides" on successful reception/ acknowledgement

52

A Sliding Packet Window

- Let A be the last ack'd packet of sender without gap;
 then window of sender = {A+1, A+2, ..., A+n}
- Already ACK'd

 Sent but not ACK'd
- Cannot be sent
- Let B be the last received packet without gap by receiver, then window of receiver = {B+1..... B+n}
- Received and ACK'd

 Acceptable but not yet received
- Cannot be received₅₃

Acknowledgements w/ Sliding Window

- Two common options
 - cumulative ACKs: ACK carries next in-order sequence number that the receiver expects

54

• Receiver sends ACK(B_{new}+1)

Topic 5 10

Acknowledgements w/ Sliding Window

- Two common options
 - cumulative ACKs: ACK carries next in-order sequence number the receiver expects
 - selective ACKs: ACK individually acknowledges correctly received packets
- Selective ACKs offer more precise information but require more complicated book-keeping
- Many variants that differ in implementation details

63

Selective Repeat (SR)

- Sender: transmit up to n unacknowledged packets
- Assume packet *k* is lost, *k+1* is not
- Receiver: indicates packet k+1 correctly received
- Sender: retransmit only packet k on timeout
- Efficient in retransmissions but complex book-keeping

 need a timer per packet

64

Observations

- With sliding windows, it is possible to fully utilize a link, provided the window size is large enough. Throughput is ~ (n/RTT)
 - Stop & Wait is like n = 1.
- Sender has to buffer all unacknowledged packets, because they may require retransmission
- Receiver may be able to accept out-of-order packets, but only up to its buffer limits
- Implementation complexity depends on protocol details (GBN vs. SR)

66

Topic 5 11

Recap: components of a solution

- Checksums (for error detection)
- Timers (for loss detection)
- · Acknowledgments
 - cumulative
 - selective
- Sequence numbers (duplicates, windows)
- Sliding Windows (for efficiency)
- Reliability protocols use the above to decide when and what to retransmit or acknowledge

67

What does TCP do?

Most of our previous tricks + a few differences

- Sequence numbers are byte offsets
- Sender and receiver maintain a sliding window
- Receiver sends cumulative acknowledgements (like GBN)
- Sender maintains a single retx. timer
- Receivers do not drop out-of-sequence packets (like SR)
- Introduces fast retransmit: optimization that uses duplicate ACKs to trigger early retx (next time)
- Introduces timeout estimation algorithms (next time)

More in Topic 5b

Topic 5 12