Computer Networking

Lent Term M/W/F 11-midday
LT1 in Gates Building

Slide Set 4

Andrew W. Moore

andrew.moore@cl.cam.ac.uk
February 2014

Topic 5a — Transport

Our goals:

« understand principles * learn about transport layer
behind transport layer protocols in the Internet:
services: — UDP: connectionless transport

— multiplexing/ — TCP: connection-oriented
demultiplexing transport

— reliable data transfer — TCP congestion control

— flow control

— congestion control

Transport Layer

* Commonly a layer at end-hosts, between the
application and network layer
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Why a transport layer?

* |P packets are addressed to a host but end-to-
end communication is between application
processes at hosts

— Need a way to decide which packets go to which
applications (more multiplexing)
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Why a transport layer?

many application
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Why a transport layer?

many application
processes

Communication
between processes
at hosts

Datalink J

Physical Communication
between hosts

(128.4.5.6 €->162.99.7.56)

Physical

Host A Host B
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Why a transport layer?

* IP provides a weak service model (best-effort)

— Packets can be corrupted, delayed, dropped,
reordered, duplicated

— No guidance on how much traffic to send and when
— Dealing with this is tedious for application developers
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Role of the Transport Layer

* Communication between application processes
— Multiplexing between application processes
— Implemented using ports

Role of the Transport Layer

* Communication between application processes
* Provide common end-to-end services for app
layer [optional]
— Reliable, in-order data delivery

— Paced data delivery: flow and congestion-control
* too fast may overwhelm the network
* too slow is not efficient

Role of the Transport Layer

* Communication between processes

* Provide common end-to-end services for app
layer [optional]

* TCP and UDP are the common transport
protocols
— also SCTP, MTCP, SST, RDP, DCCP, ...

Role of the Transport Layer

* Communication between processes

* Provide common end-to-end services for app
layer [optional]

* TCP and UDP are the common transport
protocols

* UDP is a minimalist, no-frills transport protocol
— only provides mux/demux capabilities




Role of the Transport Layer Role of the Transport Layer

+ Communication between processes * Communication between processes
* Provide common end-to-end services for app layer — mux/demux from and to application processes
[optional]

— implemented using ports

TCP and UDP are the common transport protocols

UDP is a minimalist, no-frills transport protocol
TCP is the totus porcus protocol

— offers apps a reliable, in-order, byte-stream abstraction
— with congestion control

— but no performance (delay, bandwidth, ...) guarantees
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Context: Applications and Sockets

Ports
* Socket: software abstraction by which an application process + Problem: deciding which app (socket) gets which packets
exchanges network messages with the (transport layer in the)
operating system — Solution: port as a transport layer identifier
— socketID = socket(..., socket.TYPE) * 16 bit identifier
— socketlD.sendto(message, ..) — OS stores mapping between sockets and ports

— a packet carries a source and destination port number in its

— socketID.recvfrom(...) transport layer header

* For UDP ports (SOCK_DGRAM)

* Two important types of sockets — 0S stores (local port, local IP address) €= socket

— UDP socket: TYPE is SOCK_DGRAM

— TCP socket: TYPE is SOCK_STREAM ¢ For TCP ports (SOCK_STREAM)
— OS stores (local port, local IP, remote port, remote IP) €-> socket
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Recap: Multiplexing and Demultiplexing

* Host receives IP packets

— Each IP header has source and destination IP
address

— Each Transport Layer header has source and
destination port number

* Host uses IP addresses and port numbers to direct the
message to appropriate socket

UDP: User Datagram Protocol

« Lightweight communication between processes

— Avoid overhead and delays of ordered, reliable delivery

« UDP described in RFC 768 — (1980!)

— Destination IP address and port to support demultiplexing
— Optional error checking on the packet contents
« (checksum field of 0 means “don’t verify checksum”)

SRC port DST port

checksum

length

DATA

4|5

8-bit
Type of Service 16-bit Total Length (Bytes)
(TOS)

it
16-bit Identification Flags | 13-bit Fragment Offset
8-bitTimeto | 6= TCP §
i 17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

16-bit Source Port | 16-bit Destination Port

More transport header fields ....

TCP or
UDP header and Payload
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More on Ports

Separate 16-bit port address space for UDP and TCP

“Well known” ports (0-1023): everyone agrees which
services run on these ports

— e.g., ssh:22, http:80

— helps client know server’s port

Ephemeral ports (most 1024-65535): dynamically selected: as the
source port for a client process
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Why a transport layer?

* IP provides a weak service model (best-effort)

— Packets can be corrupted, delayed, dropped,
reordered, duplicated

2
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Principles of Reliable data transfer

* important in app., transport, link layers

* top-10 list of important networking topics!

e In a perfect world, reliable
transport is easy

But the Internet default is best-effort

application
layer

reliable channel, .
e All the bad things best-effort can

do
e apacket is corrupted (bit errors)
e apacket is lost
e apacket is delayed (why?)
(a) provided service e packets are reordered (why?)

o apacket is duplicated (why?)

transport
layer

Principles of Reliable data transfer

* important in app., transport, link layers
* top-10 list of important networking topics!

application
layer

(Jreliable channel

transport
layer

Lo{ unreliable channel) :

(a) provided service (b) service implementation

+  characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)
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Principles of Reliable data transfer

* important in app., transport, link layers
* top-10 list of important networking topics!

c

]

S 5
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- rdt_send() rdt_rcv()
8 5 [relicble data reliable data

& = [fransfer protocol transfer profocol
% O (sending side) (receiving side)

udt_send 0} 1 udt rev()

LO‘ unreliable channel :

(b) service implementation

(a) provided service

*  characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

rdt_send() : called from above,
(e.g., by app.). Passed data to

rdt_rcv () : called by rdt to
deliver data to upper

deliver to receiver upper layer

rdt send()

rdt_rev()

reliable data receive
transfer protocol

send [relicble data
id tfransfer protocol .
side  |sending side) (receiving side) side

udt_send ()} [acter] 1 udt rov0

/ L{ unreliable channel )J

udt_send() : called by rdt,
to transfer packet over

udt_rcv () : called when packet
arrives on rcv-side of channel

unreliable channel to receiver
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Reliable data transfer: getting started

we' Il

« incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

« consider only unidirectional data transfer
— but control info will flow on both directions!

« use finite state machines (FSM) to specify sender,

receiver
event causing state transition
actions taken on state transition

state: when in this “state”
next state uniquely
determined by next -

event actions )

event

KR state machines — a note.

Beware
Kurose and Ross has a confusing/confused attitude to
state-machines.

I've attempted to normalise the representation.
UPSHOT: these slides have differing information to the
KR book (from which the RDT example is taken.)

in KR “actions taken” appear wide-ranging, my

interpretation is more specific/relevant.
Relevant event causing state transition

state: when in this “state”
next state uniquely
determined by next

event

Relevant action taken on state transition

State
name
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Rdt1.0: reliable transfer over a reliable channel

underlying channel perfectly reliable

— no bit errors

— no loss of packets
separate FSMs for sender, receiver:

— sender sends data into underlying channel
— receiver read data from underlying channel

rdt_send(data) Ny udt_rev(packet)
udt_send(packet)

rdt_rcv(data)
\ Action /

sender receiver

Rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
— checksum to detect bit errors
the question: how to recover from errors:

— acknowledgements (ACKs): receiver explicitly tells sender that
packet received is OK

— negative acknowledgements (NAKs): receiver explicitly tells sender
that packet had errors

— sender retransmits packet on receipt of NAK
* new mechanismsin rdt2.0 (beyond rdtl.0):
— error detection

— receiver feedback: control msgs (ACK,NAK) receiver->sender
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Dealing with Packet Corruption

—

 -2{
 .

?y
2 ‘

Sender Receiver
Time

rdt2.0: FSM specification

rdt_send(data)
udt_send(packet)

receiver
udt_rcv(reply) &&
isNAK(reply)

Waiting
for reply

udt_rcv(packet) &&

udt_send(packet) corrupt(packet)

udt_send(NAK)
udt_rcv(reply) && isACK(reply) ~
A
sender

udt_rcv(packet) &&

Note: the sender holds a copy
of the packet being sent until
the delivery is acknowledged.

notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)
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rdt2.0: operation with no errors

rdt_send(data)
udt_send(packet)

udt_rev(reply) &&
isNAK(reply)
Waiting

for reply

udt_rcv(packet) &&
corrupt(packet)

udt_send(NAK)

dt_send(packet)

udt_rcv(reply) && isACK(reply)
A

hudt_rcv(packet) &&

notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)

rdt2.0: error scenario

rdt_send(data)
udt_send(packet)

Waiting
for reply

udt_rcv(reply) && isACK(reply)

udt_rcv(packet) &&
corrupt(packet)

udt_send(NAK)

notcorrupt(packet)
rdt_rcv(data)
udt_send(ACK)

36
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rdt2.0 has a fatal flaw!

What happens if ACK/NAK

corrupted? .
« sender doesn’ t know what

happened at receiver! .
« can’tjust retransmit: possible

duplicate .

Handling duplicates:

sender retransmits current
packet if ACK/NAK garbled
sender adds sequence number
to each packet

receiver discards (doesn’t
deliver) duplicate packet

stop and wait
Sender sends one packet,
then waits for receiver
response

Dealing with Packet Corruption

1"

4

“

%N\
e @

Data and ACK packets carry sequence numbers
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rdt2.1: sender, handles garbled ACK/NAKs

rdt_send(data)

sequence=0
udt_send(packet)
~

\

Waiting
for reply

udt_rcv(reply)
&& notcorrupt(reply)
&& isACK(reply)

A

udt_rev(reply) &&
(corrupt(reply) ||
isNAK(reply) )

udt_send(packet)

udt_rcv(reply) &&
( corrupt(reply) ||
isNAK(reply) )
udt_send(packet)
udt_rcv(reply)

&& notcorrupt(reply)
&& isACK(reply)

A

rdt_send(data)

sequence=1
udt_send(packet)

rdt2.1: receiver, handles garbled ACK/NAKs

udt_rcv(packet) && not corrupt(packet)
&& has_seq0(packet)
Udt_send(ACK)
rdt_rcv(data)
\

receive(packet) && corrupt(packet) udt_rcv(packet) && corrupt(packet)

udt_send(NAK) udt_send(NAK)

receive(packet) &8&
not corrupt(packet) &&

receive(packet) &&
not corrupt(packet) && (
has_seq0(packet)

has_seq1(packet)
udt_send(ACK)

udt_send(ACK)

udt_rcv(packet) && not corrupt(packet)
&& has_seql(packet)

udt_send(ACK)
rdt_rcv(data)
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rdt2.1: discussion

Sender: Receiver:
* seq # added to pkt * must check if received
* twoseq.# s (0,1) will packet is duplicate
suffice. Why? — state indicates whether O or 1

* must check if received ACK/
NAK corrupted
* twice as many states
— state must “remember”
whether “current” pkt has a
0 or 1 sequence number

is expected pkt seq #
note: receiver can not know
if its last ACK/NAK received
OK at sender

a1

rdt2.2: a NAK-free protocol

« same functionality as rdt2.1, using ACKs only
* instead of NAK, receiver sends ACK for last pkt received OK
— receiver must explicitly include seq # of pkt being ACKed

« duplicate ACK at sender results in same action as NAK:
retransmit current pkt

a2




Topic 5

rdt2.2: sender, receiver fragments

rdt_send(data)

sequence=0
udt_send(packet)

sender FSM
fragment

udt_rcv(packet) &&
(corrupt(packet) | |
has_seq1(packet))

receiver FSM

rdt_rcv(reply) &&
(corrupt(reply) ||
isACK1(reply|

udt_send(packet)

udt_rcv(reply)
&& not corrupt(reply)
&8 isACKO(reply)

A

rdt3.0: channels with errors and loss

New assumption: underlying
channel can also lose
packets (data or ACKs)

— checksum, seq. #, ACKs,
retransmissions will be of
help, but not enough

Approach: sender waits
“reasonable” amount of
time for ACK

* retransmits if no ACK received in
this time

« if pkt (or ACK) just delayed (not
lost):

— retransmission will be
duplicate, but use of seq. #s
already handles this

— receiver must specify seq # of
pkt being ACKed

¢ requires countdown timer

[Timeout

Dealing with Packet Loss

P()

Timer-driven loss detection

Set timer when packet is sent; retransmit on timeout

udt_send(ACK1) fragment
i ) && not corr )
&8 has_seql(packet)
send(ACK1)
rdt_rcv(data)
3
rdt3.0 sender
rdt_send(data) udt_rcv(reply) &&
\  sequence=0 (corrupt(reply) ||
\ udt_send(packet) isACK(reply,1) )
udt_rcv(reply) A
A .
timeout
udt_send(packet)
udt_rcv(reply)
&& notcorrupt(reply) udt_rev(reply)
&& isACK(reply,1) && notcorrupt(reply)
A && isACK(reply,0)
A
timeout
udt_send(packet) C
(J udt_rcv(reply)
udt_rev(packet) && rdt_send(data)
( corrupt(packet) || sequence=1
ISACK(reply,0) ) udt_send(packet)
A
45
Dealing with Packet Loss
1

[Timeout

%/

Receiver
Time s

Dealing with Packet Loss

P(1)
[Timeout

1 P(1 ack(1)

Timer-driven retx. can lead to duplicates
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Performance of rdt3.0

* rdt3.0 works, but performance stinks
* ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

L 8000bits .
s = — = ——5—— = dmicroseconds
R 10"bps

) U gengert Utilization — fraction of time sender busy sending

U - L/R 008 00027
sender prT . L/R 30008

> 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
> network protocol limits use of physical resources!

49

rdt3.0: stop-and-wait operation

sender receiver

first packet bit i t=0
last packet bit transmitted, t =L/ R

- first packet bit arrives
RTT] Hlast packet bit arrives, send ACK

ACK arrives, send nex
packet, t=RTT+L/R

U = =
sender RTT+L/R 30.008

50

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, “in-flight”, yet-to-be-
acknowledged pkts
— range of sequence numbers must be increased
— buffering at sender and/or receiver

(@ ®) in operation

A Sliding Packet Window

* window = set of adjacent sequence numbers
— The size of the set is the window size; assume window size is n

* General idea: send up to n packets at a time
— Sender can send packets in its window
— Receiver can accept packets in its window

— Window of acceptable packets “slides” on successful reception/
acknowledgement

52

A Sliding Packet Window

Let A be the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, ..., A+n}

n I Already ACK'd

A
IIIiDDIIDDIDDDDDDD

sequence number >

D Sent but not ACK'd

D Cannot be sent

Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,..., B+n}

n I Received and ACK'd

B
i IiDDIIDDIDDDDD

Acceptable but not
yet received

D Cannot be received;;

Acknowledgements w/ Sliding Window

* Two common options

— cumulative ACKs: ACK carries next in-order
sequence number that the receiver expects

54
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Cumulative Acknowledgements (1)

* At receiver
n I Received and ACK'd

'—A—‘ D Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] cannot be eceivea

e After receiving B+1, B+2

Bye= B+2 n

IIIIIIIi 0000o0ooo

e Receiver sends ACK(B, ., +1)

new 55

Go-Back-N (GBN)
* Sender transmits up to n unacknowledged packets

* Receiver only accepts packets in order

— discards out-of-order packets (i.e., packets other than B+1)
* Receiver uses cumulative acknowledgements

— i.e., sequence# in ACK = next expected in-order sequence#

* Sender sets timer for 1%t outstanding ack (A+1)
« If timeout, retransmit A+1, ..., A+n

GBN Example w/o Errors

Sender Window ‘ Window size = 3 packets ‘ Receiver Window

w —

1,2}
{1,2,3}
{2,3,4}
{3, 4,5}
{4,5, 6}

DUA WNBR

Sender Receiver
Time

Cumulative Acknowledgements (2)

* At receiver
n I Received and ACK'd

'—A—‘ D Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] cannot be receivea

e After receiving B+4, B+5

n

f !—A—\
IIIIIiDDDIIDDDDDDD

e Receiver sends ACK(B+1)

How do we
recover?

56

Sliding Window with GBN

* Let Abe the last ack’d packet of sender without gap;
then window of sender = {A+1, A+2, ..., A+n}

n I Already ACK'd

A!—A—\ DSentbutnotACK'd
|||iDDDDDDDDDDDDDD [] cannot be sent

sequence number >

* Let B be the last received packet without gap by receiver,
then window of receiver = {B+1,..., B+n}

n I Received and ACK'd

'—A—‘ D Acceptable but not

yet received

IIIIIiDDDDDDDDDDDD [] ot b received

GBN Example with Errors

‘ Window size = 3 packets ‘

AU WNE

limeout

Packet 4  ’

Sender Receiver

DU

60
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GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
udt_send(packet[nextseqnum)

nextseqnum++
}

else

refuse_data(data) Block?

A

base=1
nextsegnum=1

udt_rev(reply)
&& corrupt(reply)

timeout
udt_send(packet[base])
udt_send(packet[base+1])

udt_send(packet[nextseqnum-1])

A\ :)
udt_rev(reply) &&
notcorrupt(reply)

A

base = getacknum(reply)+1

GBN: receiver extended FSM

A
udt_send(reply)

udt_rev(packet)
-~ && notcurrupt(packet)

A TT=~ll &

[EL S -

expectedseqnum=1 \)rdt_rc\/(data)
udt_send(ACK)

expectedseqnum#+

ACK-only: always send an ACK for correctly-received packet with
the highest in-order seq #
— may generate duplicate ACKs
— need only remember expectedseqnum
* out-of-order packet:
— discard (don’t buffer) -> no receiver buffering!

— Re-ACK packet with highest in-order seq #
62

Acknowledgements w/ Sliding Window

* Two common options
— cumulative ACKs: ACK carries next in-order sequence
number the receiver expects
— selective ACKs: ACK individually acknowledges
correctly received packets

* Selective ACKs offer more precise information but
require more complicated book-keeping

* Many variants that differ in implementation
details

Selective Repeat (SR)

Sender: transmit up to n unacknowledged packets
Assume packet k is lost, k+1 is not
Receiver: indicates packet k+1 correctly received

Sender: retransmit only packet k on timeout

Efficient in retransmissions but complex book-keeping
— need a timer per packet

64
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SR Example with Errors

‘ Window size = 3 packets ‘

{1 1

{1,2} 2

{1,2,3} 3
(23744
Timeout
Packet 4

456} | 4, ACK=6
{4,5,6}
Time
“
vao Te——

Sender Receiver

5
6
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Observations

* With sliding windows, it is possible to fully utilize a
link, provided the window size is large enough.
Throughput is ~ (n/RTT)

— Stop & Wait is like n = 1.

* Sender has to buffer all unacknowledged packets,
because they may require retransmission

* Receiver may be able to accept out-of-order

packets, but only up to its buffer limits

Implementation complexity depends on protocol

details (GBN vs. SR)

66
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Recap: components of a solution

Checksums (for error detection)

Timers (for loss detection)
Acknowledgments

— cumulative

— selective

Sequence numbers (duplicates, windows)
Sliding Windows (for efficiency)

Reliability protocols use the above to decide
when and what to retransmit or acknowledge

What does TCP do?

Most of our previous tricks + a few differences
* Sequence numbers are byte offsets

* Sender and receiver maintain a sliding window

* Receiver sends cumulative acknowledgements (like GBN)

* Sender maintains a single retx. timer

* Receivers do not drop out-of-sequence packets (like SR)

* Introduces fast retransmit : optimization that uses duplicate
ACKs to trigger early retx (next time)

* Introduces timeout estimation algorithms (next time)

More in Topic 5b
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