Computer Networking

Lent Term M/W/F 11-midday LT1 in Gates Building

Slide Set 4

Andrew W. Moore

andrew.moore@cl.cam.ac.uk
February 2014

Topic 5a – Transport

Our goals:

- understand principles behind transport layer services:
 - multiplexing/demultiplexing
 - reliable data transfer
 - flow control
 - congestion control

- learn about transport layer protocols in the Internet:
 - UDP: connectionless transport
 - TCP: connection-oriented transport
 - TCP congestion control

Transport Layer

 Commonly a layer at end-hosts, between the application and network layer

- IP packets are addressed to a host but end-toend communication is between application processes at hosts
 - Need a way to decide which packets go to which applications (more multiplexing)

Application

Transport

Network

Datalink

Physical

Application

Transport

Network

Datalink

Physical

Host B

Host A

- IP packets are addressed to a host but end-to-end communication is between application processes at hosts
 - Need a way to decide which packets go to which applications (mux/demux)
- IP provides a weak service model (best-effort)
 - Packets can be corrupted, delayed, dropped, reordered, duplicated
 - No guidance on how much traffic to send and when
 - Dealing with this is tedious for application developers

- Communication between application processes
 - Multiplexing between application processes
 - Implemented using ports

- Communication between application processes
- Provide common end-to-end services for app layer [optional]
 - Reliable, in-order data delivery
 - Paced data delivery: flow and congestion-control
 - too fast may overwhelm the network
 - too slow is not efficient

- Communication between processes
- Provide common end-to-end services for app layer [optional]
- TCP and UDP are the common transport protocols
 - also SCTP, MTCP, SST, RDP, DCCP, …

- Communication between processes
- Provide common end-to-end services for app layer [optional]
- TCP and UDP are the common transport protocols
- UDP is a minimalist, no-frills transport protocol
 - only provides mux/demux capabilities

- Communication between processes
- Provide common end-to-end services for app layer [optional]
- TCP and UDP are the common transport protocols
- UDP is a minimalist, no-frills transport protocol
- TCP is the totus porcus protocol
 - offers apps a reliable, in-order, byte-stream abstraction
 - with congestion control
 - but no performance (delay, bandwidth, ...) guarantees

- Communication between processes
 - mux/demux from and to application processes
 - implemented using ports

Context: Applications and Sockets

 Socket: software abstraction by which an application process exchanges network messages with the (transport layer in the) operating system

```
socketID = socket(..., socket.TYPE)
socketID.sendto(message, ...)
socketID.recvfrom(...)
```

- Two important types of sockets
 - UDP socket: TYPE is SOCK_DGRAM
 - TCP socket: TYPE is SOCK_STREAM

Ports

- Problem: deciding which app (socket) gets which packets
- Solution: port as a transport layer identifier
 - 16 bit identifier
 - OS stores mapping between sockets and ports
 - a packet carries a source and destination port number in its transport layer header
- For UDP ports (SOCK_DGRAM)
 - OS stores (local port, local IP address) ← → socket
- For TCP ports (SOCK_STREAM)
 - OS stores (local port, local IP, remote port, remote IP) $\leftarrow \rightarrow$ socket

I ACISIOII	4-bit Header Length	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)		
16-bit Identification			3-bit Flags	13-bit Fragment Offset	
8-bit Time to Live (TTL) 8-bit Protocol		16-bit Header Checksum			
32-bit Source IP Address					
32-bit Destination IP Address					
Options (if any)					
IP Payload					

4	5	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)		
16-bit Identification			3-bit Flags	13-bit Fragment Offset	
	ime to (TTL)	8-bit Protocol	16-bit Header Checksum		
32-bit Source IP Address					
32-bit Destination IP Address					
IP Payload					

4	5	8-bit Type of Service (TOS)	16-bit Total Length (Bytes)		
16-bit Identification			3-bit Flags	13-bit Fragment Offset	
	8-bit Time to 6 = TCP 17 = UDP		16-bit Header Checksum		
32-bit Source IP Address					
32-bit Destination IP Address					
16-bit Source Port			16-bit Destination Port		
More transport header fields					
TCP or header and Payload UDP					

Recap: Multiplexing and Demultiplexing

- Host receives IP packets
 - Each IP header has source and destination IP address
 - Each Transport Layer header has source and destination port number
- Host uses IP addresses and port numbers to direct the message to appropriate socket

More on Ports

- Separate 16-bit port address space for UDP and TCP
- "Well known" ports (0-1023): everyone agrees which services run on these ports
 - e.g., ssh:22, http:80
 - helps client know server's port
- Ephemeral ports (most 1024-65535): dynamically selected: as the source port for a client process

UDP: User Datagram Protocol

- Lightweight communication between processes
 - Avoid overhead and delays of ordered, reliable delivery
- UDP described in RFC 768 (1980!)
 - Destination IP address and port to support demultiplexing
 - Optional error checking on the packet contents
 - (checksum field of 0 means "don't verify checksum")

SRC port	DST port	
checksum	length	
DATA		

- IP packets are addressed to a host but end-toend communication is between application processes at hosts
 - Need a way to decide which packets go to which applications (mux/demux)
- IP provides a weak service model (best-effort)
 - Packets can be corrupted, delayed, dropped, reordered, duplicated

Principles of Reliable data transfer

- important in app., transport, link layers
- top-10 list of important networking topics!

(a) provided service

 In a perfect world, reliable transport is easy

But the Internet default is *best-effort*

- All the bad things best-effort can do
 - a packet is corrupted (bit errors)
 - a packet is lost
 - a packet is delayed (why?)
 - packets are reordered (why?)
 - a packet is duplicated (why?)

Principles of Reliable data transfer

- important in app., transport, link layers
- top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Principles of Reliable data transfer

- important in app., transport, link layers
- top-10 list of important networking topics!

• characteristics of unreliable channel will determine complexity of reliable data transfer protocol (rdt)

Reliable data transfer: getting started

Reliable data transfer: getting started

We'll:

- incrementally develop sender, receiver sides of reliable data transfer protocol (rdt)
- consider only unidirectional data transfer
 - but control info will flow on both directions!
- use finite state machines (FSM) to specify sender, receiver

KR state machines – a note.

Beware

Kurose and Ross has a confusing/confused attitude to state-machines.

I've attempted to normalise the representation.

UPSHOT: these slides have differing information to the KR book (from which the RDT example is taken.)

in KR "actions taken" appear wide-ranging, my interpretation is more specific/relevant.

state: when in this "state" next state uniquely determined by next event

Relevant event causing state transition
Relevant action taken on state transition

State
name

event
actions

State
name

actions

Rdt1.0: reliable transfer over a reliable channel

- underlying channel perfectly reliable
 - no bit errors
 - no loss of packets
- separate FSMs for sender, receiver:
 - sender sends data into underlying channel
 - receiver read data from underlying channel

Rdt2.0: channel with bit errors

- underlying channel may flip bits in packet
 - checksum to detect bit errors
- the question: how to recover from errors:
 - acknowledgements (ACKs): receiver explicitly tells sender that packet received is OK
 - negative acknowledgements (NAKs): receiver explicitly tells sender that packet had errors
 - sender retransmits packet on receipt of NAK
- new mechanisms in rdt2.0 (beyond rdt1.0):
 - error detection
 - receiver feedback: control msgs (ACK,NAK) receiver->sender

Dealing with Packet Corruption

rdt2.0: FSM specification

rdt_send(data)
udt_send(packet)

sender

Note: the sender holds a copy of the packet being sent until the delivery is acknowledged.

receiver

udt_rcv(packet) &&
corrupt(packet)

udt_send(NAK)

udt_rcv(packet) &&
notcorrupt(packet)

rdt_rcv(data)
udt_send(ACK)

rdt2.0: operation with no errors

rdt2.0: error scenario

rdt2.0 has a fatal flaw!

What happens if ACK/NAK corrupted?

- sender doesn't know what happened at receiver!
- can't just retransmit: possible duplicate

Handling duplicates:

- sender retransmits current packet if ACK/NAK garbled
- sender adds sequence number to each packet
- receiver discards (doesn't deliver) duplicate packet

stop and wait

Sender sends one packet, then waits for receiver response

Dealing with Packet Corruption

rdt2.1: sender, handles garbled ACK/NAKs

rdt2.1: receiver, handles garbled ACK/NAKs

rdt2.1: discussion

Sender:

- seq # added to pkt
- two seq. #'s (0,1) will suffice. Why?
- must check if received ACK/ NAK corrupted
- twice as many states
 - state must "remember"whether "current" pkt has a0 or 1 sequence number

Receiver:

- must check if received packet is duplicate
 - state indicates whether 0 or 1is expected pkt seq #
- note: receiver can not know if its last ACK/NAK received OK at sender

rdt2.2: a NAK-free protocol

- same functionality as rdt2.1, using ACKs only
- instead of NAK, receiver sends ACK for last pkt received OK
 - receiver must explicitly include seq # of pkt being ACKed
- duplicate ACK at sender results in same action as NAK: retransmit current pkt

rdt2.2: sender, receiver fragments

rdt3.0: channels with errors and loss

New assumption: underlying channel can also lose packets (data or ACKs)

 checksum, seq. #, ACKs,
 retransmissions will be of help, but not enough Approach: sender waits "reasonable" amount of time for ACK

- retransmits if no ACK received in this time
- if pkt (or ACK) just delayed (not lost):
 - retransmission will be duplicate, but use of seq. #'s already handles this
 - receiver must specify seq # of pkt being ACKed
- requires countdown timer

rdt3.0 sender

Dealing with Packet Loss

Dealing with Packet Loss

Dealing with Packet Loss

Performance of rdt3.0

- rdt3.0 works, but performance stinks
- ex: 1 Gbps link, 15 ms prop. delay, 8000 bit packet:

$$d_{trans} = \frac{L}{R} = \frac{8000 \text{bits}}{10^9 \text{bps}} = 8 \text{ microseconds}$$

O U sender: utilization – fraction of time sender busy sending

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

- 1KB pkt every 30 msec -> 33kB/sec throughput over 1 Gbps link
- o network protocol limits use of physical resources!

rdt3.0: stop-and-wait operation

$$U_{\text{sender}} = \frac{L/R}{RTT + L/R} = \frac{.008}{30.008} = 0.00027$$

Pipelined (Packet-Window) protocols

Pipelining: sender allows multiple, "in-flight", yet-to-be-acknowledged pkts

- range of sequence numbers must be increased
- buffering at sender and/or receiver

(a) a stop-and-wait protocol in operation

(b) a pipelined protocol in operation

A Sliding Packet Window

- window = set of adjacent sequence numbers
 - The size of the set is the window size; assume window size is n
- General idea: send up to n packets at a time
 - Sender can send packets in its window
 - Receiver can accept packets in its window
 - Window of acceptable packets "slides" on successful reception/ acknowledgement

A Sliding Packet Window

Let A be the last ack'd packet of sender without gap;
 then window of sender = {A+1, A+2, ..., A+n}

 Let B be the last received packet without gap by receiver, then window of receiver = {B+1,..., B+n}

Acknowledgements w/ Sliding Window

- Two common options
 - cumulative ACKs: ACK carries next in-order sequence number that the receiver expects

Cumulative Acknowledgements (1)

At receiver

Received and ACK'd

Acceptable but not yet received

Cannot be received

• After receiving B+1, B+2

Receiver sends ACK(B_{new}+1)

Cumulative Acknowledgements (2)

At receiver

• After receiving B+4, B+5

How do we recover?

Receiver sends ACK(B+1)

Go-Back-N (GBN)

- Sender transmits up to n unacknowledged packets
- Receiver only accepts packets in order
 - discards out-of-order packets (i.e., packets other than B+1)
- Receiver uses cumulative acknowledgements
 - i.e., sequence# in ACK = next expected in-order sequence#
- Sender sets timer for 1st outstanding ack (A+1)
- If timeout, retransmit A+1, ..., A+n

Sliding Window with GBN

Let A be the last ack'd packet of sender without gap;
 then window of sender = {A+1, A+2, ..., A+n}

 Let B be the last received packet without gap by receiver, then window of receiver = {B+1,..., B+n}

GBN Example w/o Errors

GBN Example with Errors

GBN: sender extended FSM

GBN: receiver extended FSM

ACK-only: always send an ACK for correctly-received packet with the highest *in-order* seq #

- may generate duplicate ACKs
- need only remember expectedseqnum
- out-of-order packet:
 - discard (don't buffer) -> no receiver buffering!
 - Re-ACK packet with highest in-order seq #

Acknowledgements w/ Sliding Window

- Two common options
 - cumulative ACKs: ACK carries next in-order sequence number the receiver expects
 - selective ACKs: ACK individually acknowledges correctly received packets
- Selective ACKs offer more precise information but require more complicated book-keeping
- Many variants that differ in implementation details

Selective Repeat (SR)

- Sender: transmit up to *n* unacknowledged packets
- Assume packet k is lost, k+1 is not
- Receiver: indicates packet k+1 correctly received
- Sender: retransmit only packet k on timeout
- Efficient in retransmissions but complex book-keeping
 - need a timer per packet

SR Example with Errors

Observations

- With sliding windows, it is possible to fully utilize a link, provided the window size is large enough.
 Throughput is ~ (n/RTT)
 - Stop & Wait is like n = 1.
- Sender has to buffer all unacknowledged packets, because they may require retransmission
- Receiver may be able to accept out-of-order packets, but only up to its buffer limits
- Implementation complexity depends on protocol details (GBN vs. SR)

Recap: components of a solution

- Checksums (for error detection)
- Timers (for loss detection)
- Acknowledgments
 - cumulative
 - selective
- Sequence numbers (duplicates, windows)
- Sliding Windows (for efficiency)
- Reliability protocols use the above to decide when and what to retransmit or acknowledge

What does TCP do?

Most of our previous tricks + a few differences

- Sequence numbers are byte offsets
- Sender and receiver maintain a sliding window
- Receiver sends cumulative acknowledgements (like GBN)
- Sender maintains a single retx. timer
- Receivers do not drop out-of-sequence packets (like SR)
- Introduces fast retransmit : optimization that uses duplicate
 ACKs to trigger early retx (next time)
- Introduces timeout estimation algorithms (next time)