
Computer Fundamentals
Lecture 2

Dr Robert Harle

Michaelmas 2013



Today's Topics

 Brief History of Computers
 Stored Program Model

 Fetch-Execute Cycle, registers, ALU etc

 Notion of Compilers and Interpreters



Turing Machines

 Inspired by the typewriter (!), Alan Turing 
(King's) created a theoretical model of a 
computing machine in the 1930s. He broke the 
machine into:
 A tape – infinitely long, broken up into cells, 

each with a symbol on them
 A head – that could somehow read and 

write the current cell
 An action table – a table of actions to 

perform for each machine state and 
symbol. E.g. move tape left

 A state register – a piece of memory that 
stored the current state



Universal Turing Machines

 Alan argued that a Turing machine could be made 
for any computable task (e.g. sqrt etc)

 But he also realised that the action table for a given 
turing machine could be written out as a string, 
which could then be written to a tape.

 So he came up with a Universal Turing Machine. This 
is a special Turing Machine that reads in the action 
table from the tape
 A UTM can hence simulate any TM if the tape 

provides the same action table
 This was all theoretical – he used the models to 

prove various theories. But he had inadvertently set 
the scene for what we now think of as a computer!



Colussus
 1944, Bletchley park

 Designed to break the 
German Lorenz SZ40/42 
encryption machine

 Fed in encrypted messages 
via paper tape. Colussus 
then simulated the positions 
of the Lorenz wheels until it 
found a match with a high 
probability

 No internal program – 
programmed by setting 
switches and patching leads

 Highly specific use, not a 
general purpose computer

 Turing machine, but not 
universal



ENIAC
 Electronic Numerical Integrator and Computer

 1946, “Giant brain” to compute artillery tables for US military
 First machine designed to be turing complete in the sense 

that it could be adapted to simulate other turing machines
 But still programmed by setting switches manually...

 Next step was to read in 
the “action table” (aka 
program) from tape as 
well as the data

 For this we needed more 
general purpose memory 
to store the program, 
input data and output



Manchester Baby
 1948 a.k.a. mark I computer
 Cunning memory based on cathode ray tube. 

Used the electron gun to charge the phosphor on 
a screen, writing dots and dashes to the tiny screen

 A light-sensitive collector plate read the screen
 But the charge would leak away within 1s so they 

had to develop a cycle of read-refresh
 Gave a huge 2048 bits of memory!

phosphor

collector

Electron
gun

First 
Stored-Program 

Computer?





EDSAC
 Electronic Delay Storage Automatic Calculator
 First practical stored-program computer,       

built here by Maurice Wilkes et al.

 Memory came in the form of a 
mercury delay line

 Used immediately for research 
here.

 Although they did have to invent 
programming....

First 
Stored-Program 

Computer?





1965-70 Integrated Circuits
 Semiconductors could replace 

traditional electronics components → 
use a slice of semiconductor and 'etch' 
on a circuit

 End up with an Integrated Circuit (IC) 
a.k.a a microchip

 Much easier to pack components on an 
IC, and didn't suffer from the reliability 
issues of the soldering iron

Moore's Law: the number of transistors 
on an IC will double every two years



The Rise of Intel

 Intel started in 1968 manufacturing ICs, producing ICs 
with a particular target of memory (RAM, see later)

 1969 – commissioned to make 12 custom chips for a 
calculator (one for keyboard scanning, one for display 
control, etc)

 Not enough resource so instead proposed a single 
general-purpose logic chip that could do all the tasks

 1971 - Managed to buy the rights and sold the chip 
commercially as the first microprocessor, the Intel 4004



1971- Microprocessor Age

 The 4004 kick-started an industry and lots of 
competitors emerged

 Intel very savvy and began an “intel inside” 
branding assault with products like the 386

 Marketing to consumers, not system builders 
any more



The CPU in more Detail



Programs, Instructions and Data

 Recall: Turing's universal machine reads in an 
action table (=program) of instructions, which it 
then applies to a tape (=data). Two options for 
our program storage in a modern machine

Memory

Program Data

CPU

Program Memory

Program Data

CPU

Harvard Memory

Von-Neumann Architecture Harvard Architecture



Storage: Stored-Program Machines

 So where do you store your programs and data?

Von-Neumann Harvard
Same memory for programs and 

data
Separate memories for programs 

and data

+ Don't have to specify a partition 
so more efficient memory use

- Have to decide in advance how 
much to allocate to each

+ Programs can modify 
themselves, giving great flexibility

+ Instruction memory can be 
declared read only to prevent viruses 
etc writing new instructions

- Programs can modify themselves, 
leaving us open to malicious 
modification

- Can't get instructions and data 
simultaneously (therefore slower)

+ Can fetch instructions and data 
simultaneously



Simple Model of Memory

 We think of memory abstractly, as 
being split into discrete chunks, each 
given a unique address

 We can read or write in whole chunks
 Modern memory is big

Memory

0 1 2 3 4 5 6 7 8



Simple Model of a CPU

Registers

PC

X

Y

Z

ALU

CPU

MAU

IB                 



A Simple Command Set

 A program is just a sequence of instructions. The 
instructions available depend on the CPU 
manufacturer

 We will make up some very simple instruction 
labels
 LIJ: Load value at memory address I into 

register J
 AIJK: Add register I to J and put the result in K
 SIJ: Store register I in memory address J



Fetch-Execute Cycle I

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

PC

X

Y

Z

ALU

CPU

MAU

1

IB                 



Fetch-Execute Cycle II

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

63

PC

X

Y

Z

ALU

CPU

MAU

2

IB                 



Fetch-Execute Cycle III

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

12

63

PC

X

Y

Z

ALU

CPU

MAU

3

IB                 



Fetch-Execute Cycle IV

L6X L7Y AXYZ SZ8

Memory

63 12

0 1 2 3 4 5 6 7 8

Registers

75

12

63

PC

X

Y

Z

ALU

CPU

MAU

4

IB                 



Functions

L9X L7Y F14 L8X F14 49 6

0 1 2 3 4 5 6 7 8

Registers

49

10

PC

X

Y

Z ALU

CPU

MAU

3

IB                 

10

9

AXYZ SZ18 RET

10 11 12 13 14 15 16 17 18 19



Instruction Sets

 The list of instructions a CPU supports is 
its Instruction Set Architecture (ISA)
 Initially all used different instructions but 

there is clearly an advantage to using the 
same instruction sets

 Intel's x86 set is a de-facto standard for 
PCs

 ARM's v6 and v7 specifications are used 
for lower power applications (phones etc)



Writing Programs

 Computers don't store text instructions like 
L6X, but rather a binary code for each 
instruction

 Called machine code



Machine Code

 What the CPU 'understands': a series of instructions that it 
processes using the the fetch-execute technique

 E.g. to add registers 1 and 2, putting the result in register 
3 using the MIPS architecture:

00000000001000100001100000100000

Register 1 Register 3 Addition

Register 2 Shift amount (N/A)OP type



Assembly
 Essentially machine code, except we replace binary 

sequences with text that is easier for humans

 E.g. add registers 1 and 2, storing in 3:

 Produces small, efficient machine code when 
assembled

 Almost as tedious to write as machine code

 Becoming a specialised skill...

 Ends up being architecture-specific if you want the most 
efficient results :-(

add $s3, $s1, $s2



Levels of Abstraction for Programming

High Level Languages

Procedural Languages

Assembly

Machine Code

Human friendly

Geek friendly

Computer friendly

                    Compile



Compilers

 A compiler is just a software program that converts  
high-level code to machine code for a particular 
archistecture (or some intermediary)

 Writing one is tricky and we require strict rules on the 
input (i.e. on the programming language). Unlike 
English, ambiguities cannot be tolerated!

Write
(text)

Compile

Machine
code

(binary)
Errors to fix

Compile succeeds
(eventually!)



Handling Architectures 

Source Code (e.g. C++)

Binary executable
for PC (x86)

Binary executable
for ARM

C++ Compiler
for ARM

C++ Compiler
for x86



Interpreters

 The final binary is a compiled program that can be run 
on one CPU architecture.

 As computers got faster, it became apparent that we 
could potentially compile 'on-the-fly'. i.e. translate 
high-level code to machine code as we go

 Call programs that do this interpreters

Architecture agnostic – 
distribute the code and have 
a dedicated interpreter on 
each machine

Have to distribute the code

Easier development loop Errors only appear at runtime

Performance hit – always 
compiling


