
1

Compiler Construction
Lent Term 2014
Lecture 9 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

• Assorted topics

– bootstrapping
– exceptions

Bootstrapping. We need some notation . . .

 app

 A

 A

mch

 A
 inter
 B

An application
called app written
in language A

An interpreter or
VM for language A
Written in language B

A machine called
mch running
language
A natively.

hello

 x86
 x86

 M1

 JBC
 jvm
 x86

hello

 JBC

 x86

 M1

Simple Examples

Tombstones

 C

 trans
A B

This is an application called trans
that translates programs in language
A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

 JBC
 jvm
 x86

Java JBC

JBC

 javac
Hello

Java

 x86

 M1

Hello

 JBC JBC x86

JBC

 aot

 JBC
 jvm
 x86
 x86

 M1

Hello

x86
 x86

 M1

 jvm

 C++ C++ x86

 x86

 gcc

 x86

 M1

Thanks to David Greaves
for the example.

Of course translators can be translated

 C

 trans
A B B

 foo_2
D E

 A

 foo_1
D E

Translator foo_2 is produced
as output from trans when
given foo_1 as input.

Our seemingly impossible task

 L

yippeee
L B

We have just invented a really great
new language L (in fact we claim that
“L is far superior to C++”). To prove how
great L is we write a compiler
for L in L (of course!). This
compiler produces machine code B
for a widely used instruction set
(say B = x86).

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

 B

yippeeee
L B

Furthermore, we want to compile our
compiler so that it can run
on a machine running B.

How can we compiler our compiler?

?

Step 1
Write a small interpreter (VM) for
a small language of byte codes

 MBC
 zoom
 B
 B

 M1

C++ B

 B

 gcc

 B

 M1

 MBC
 zoom
 C++

MBC = My Byte Codes

The zoom machine!

Step 2
Pick a small subset S of L and

write a translator from S to MBC

 B

 gcc
C++ B C++

 yip
S MBC

Write yip by hand. (It sure would be nice if we
could hide the fact that this is written is C++.)

Translator yipp is produced
as output from gcc when yip is given as input.

 B

 yipp
S MBC

Step 3
Write a compiler for L in S

 S

 yippe
L B

Write a compiler yippe for the
full language L, but written only
in the sub-language S.

Compile yippe using yipp to produce yippee

 B

 yipp
S MBC MBC

 yippee
L B

Step 4
Write a compiler for L in L

 L

 yippeee
L B

Rewrite compiler
yippe to yippeee,
using the full power
of language L.

 Now compile this using yippee to obtain our goal!

 MBC

 yippee
L B B

yippeeee
L B

 MBC
 zoom
 B
 B

 M1

 C++

S MBC yip

 B

C++ B gcc

 S

L B yippe

 B

S MBC yipp MBC

L B yippee B

L B yippeeee

 L

L B yippeee

Putting it all together

We wrote only these compilers
and the MBC VM.

 MBC
 zoom
 B

 B

 M1

 B

 M1

 B

 M1

Step 5
Cover our tracks and leave the world

mystified and amazed

 L

 yippeee
L B

 MBC

 yippee
L B

1. Use gcc to compile the zoom interpreter
2. Use zoom to run voodoo with input yippeee to

produce output the compiler yippeeee

 MBC
 zoom
 C++

Our L compiler download site contains only three components:

Our instructions:

Shhhh! Don’t tell
anyone that
we wrote the first
compiler in C++

This is a just file of bytes.
We give it the mysterious and
intimidating name voodoo

New Topic : Exceptions (informal description)

e handle f ! raise e !

If expression e evaluates
“normally” to value v,
then v is the result of the
entire expression.

Otherwise, an exceptional
value v’ is “raised” in the
evaluation of e, then
result is (f v’)

Evaluate expression e to
value v, and then raise v
as an exceptional value,
which can only be
“handled”.

Implementation of exceptions
may require a lot of language-specific
consideration and care. Exceptions
can interact in powerful and unexpected
ways with other language features.
Think of C++ and class destructors,
for example.

Viewed from the call stack

Call stack just
before evaluating
code for

e handle f !

handle
frame

Push a special
frame for the
handle

. . .

. . .

handle
frame

current
frame

. . .

. . .

“raise v” is
encountered
while evaluating
a function body
associated with
top-most frame

frame
for f
 v

“Unwind” call stack.
Depending on language,
this may involve some
“clean up” to free resources.

Possible pseudo-code implementation

e handle f !
let fun _h27 () = !
 build special “handle frame” !
 save address of f in frame; !
 … code for e … !
 return value of e !
in _h27 () end !

raise e ! … code for e … !
save v, the value of e; !
unwind stack until first !
fp found pointing at a handle frame; !
Replace handle frame with frame !
for call to (extracted) f using !
v as argument. !
!

