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1 Introduction

At the beginning of the course, two exercises were set involving the evaluation of an integral that will

be needed for the Bayesian treatment of neural networks. The following notes provide solutions to

these problems.

2 Gaussian integrals: the simple case

The problem is to evaluate the integral

I =

∫

∞

−∞

exp

(

−
ax2

2

)

dx.

This is a fairly standard integration problem and several solutions are available in text books. For

example, start by squaring it, so

I2 =

∫

∞

−∞

exp

(

−
ax2

2

)

dx×

∫

∞

−∞

exp

(

−
ay2

2

)

dy

=

∫

∞

−∞

∫

∞

−∞

exp
(

−
a

2
(x2 + y2)

)

dx dy.

Then convert to polar co-ordinates, so x = r cos θ, y = r sin θ and the Jacobian is

J =

∣

∣

∣

∣

∂x
∂r

∂y
∂r

∂x
∂θ

∂y
∂θ

∣

∣

∣

∣

=

∣

∣

∣

∣

cos θ sin θ
−r sin θ r cos θ

∣

∣

∣

∣

= r cos2 θ + r sin2 θ = r.

We now have

I2 =

∫ 2π

0

∫

∞

0
r exp

(

−
ar2

2

)

dr dθ

and as

−
1

a

d

dr

(

exp(−
ar2

2
)

)

= r exp(−
ar2

2
)

this is

I2 =

∫ 2π

0

[

−
1

a
exp(−

ar2

2
)

]∞

0

dθ =
1

a

∫ 2π

0
dθ =

2π

a

and so

I =

√

2π

a
.
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3 Gaussian integrals: the general case

The problem now is to evaluate the more general integral

I =

∫

Rn

exp

(

−
1

2

(

x
T
Ax+ b

T
x+ c

)

)

dx

where A is an n× n symmetric matrix with real-valued elements, b ∈ R
n is a real-valued vector and

c ∈ R. First of all, we can dispose of the constant part of the integrand as

I =

∫

Rn

exp

(

−
1

2

(

x
T
Ax+ b

T
x
)

)

exp
(

−
c

2

)

dx = exp
(

−
c

2

)

I ′

where

I ′ =

∫

Rn

exp

(

−
1

2

(

x
T
Ax+ b

T
x
)

)

dx.

We’re now going to make a change of variables, based on the fact that A has n eigenvalues vi and n
eigenvectors ei such that

Aei = viei (1)

for i = 1, . . . , n. The eigenvalues can be found such that they are orthonormal

e
T
i ej =

{

1 if i = j
0 otherwise.

Multiplying (1) on both sides by A
−1 gives

A
−1

Aei = Inei = ei = A
−1viei

for i = 1, . . . , n, where In is the n× n identity matrix. Consequently

A
−1

ei =
1

vi
ei

for i = 1, . . . , n and A
−1 has the same eigenvectors as A, but eigenvalues 1/vi. As the eigenvectors

are orthonormal, any vector x can be written as

x =
n
∑

i=1

λiei

for suitable values λi, and we can represent b as

b =

n
∑

i=1

βiei

in the same way. Next, we make a change of variables from x to

λ
T =

[

λ1 λ2 · · · λn

]

.
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To make a change of variables we need to compute the Jacobian and rewrite the integral. The Jacobian

for this transformation is

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂x1

∂λ1

∂x2

∂λ1
· · · ∂xn

∂λ1

∂x1

∂λ2

∂x2

∂λ2
· · · ∂xn

∂λ2

...
...

. . .
...

∂x1

∂λn

∂x2

∂λn

· · · ∂xn

∂λn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

As we saw above that

x =
n
∑

i=1

λiei

we have

xj =
n
∑

i=1

λie
(j)
i

where e
(j)
i is the jth element of ei, and so

∂xj
∂λk

= e
(j)
k .

Thus

J =

∣

∣

∣

∣

∣

∣

∣

∣

...
... · · ·

...

e1 e2 · · · en
...

... · · ·
...

∣

∣

∣

∣

∣

∣

∣

∣

.

That is, the determinant of the matrix having the eigenvectors as its columns. Define

E =









...
... · · ·

...

e1 e2 · · · en
...

... · · ·
...









such that J = |E|. As the eigenvectors are orthonormal we have

J2 = |E||E| = |E||ET | = |EE
T | = |In| = 1

and so J = 1.

Let’s now look at the integrand

x
T
Ax+ b

T
x.

Looking at the first term
(

n
∑

i=1

λie
T
i

)

A

(

n
∑

i=1

λiei

)

=

(

n
∑

i=1

λie
T
i

)(

n
∑

i=1

λiAei

)

=

(

n
∑

i=1

λie
T
i

)(

n
∑

i=1

λiviei

)

=
n
∑

i=1

n
∑

j=1

λiλjvie
T
j ei

=

n
∑

i=1

viλ
2
i .
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The second term simplifies in a similar way

b
T
x =

(

n
∑

i=1

βie
T
i

)





n
∑

j=1

λjej





=

n
∑

i=1

n
∑

j=1

βiλje
T
i ej

=

n
∑

i=1

βiλi

and so the integrand becomes

x
T
Ax+ b

T
x =

n
∑

i=1

(

viλ
2
i + βλi

)

.

Thus the result of changing the variable is that

I ′ =

∫

Rn

exp

(

−
1

2

(

x
T
Ax+ b

T
x
)

)

dx

=

∫

Rn

exp

(

−
1

2

(

n
∑

i=1

(

viλ
2
i + βλi

)

))

dλ

=

n
∏

i=1

∫

∞

−∞

exp

(

−
1

2

(

viλ
2
i + βiλi

)

)

dλi.

What have we gained by changing the variable?

• We have changed a multiple integral into a product of single integrals.

• Each of these single integrals is almost of a form that can be solved using the simple case above.

How do we proceed? Writing

(

−
1

2

(

viλ
2
i + βiλi

)

)

= −
vi
2

(

λi +
βi
2vi

)2

+
β2
i

8vi

and changing the variable in the simple integral from λi to

θi =

(

λi +
βi
2vi

)

gives
dθi
dλi

= 1

and
∫

∞

−∞

exp

(

−
1

2

(

viλ
2
i + βiλi

)

)

dλi = exp

(

β2
i

8vi

)∫

∞

−∞

exp
(

−
vi
2
θ2i

)

dθi

= exp

(

β2
i

8vi

)(

2π

vi

)1/2
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using the simple case. We now have

I ′ =
n
∏

i=1

exp

(

β2
i

8vi

)(

2π

vi

)1/2

.

This can be simplified further in two steps. First, if A has eigenvalues vi then

|A| =

n
∏

i=1

vi

and so
n
∏

i=1

(

1

vi

)

= |A|−1.

Thus
n
∏

i=1

(

2π

vi

)1/2

= (2π)n/2|A|−1/2.

Then, we have

b
T
A

−1
b =

(

n
∑

i=1

βie
T
i

)

A
−1

(

n
∑

i=1

βiei

)

=

(

n
∑

i=1

βie
T
i

)(

n
∑

i=1

βi
vi
ei

)

=

n
∑

i=1

n
∑

j=1

βje
T
j ei

βi
vi

=
n
∑

i=1

β2
i

vi
.

Thus

n
∏

i=1

exp

(

β2
i

8vi

)

= exp

(

1

8

n
∑

i=1

β2
i

vi

)

= exp

(

1

8
b
T
A

−1
b

)

and collecting everything together we have,

I = exp
(

−
c

2

)

(2π)n/2|A|−1/2 exp

(

1

8
b
T
A

−1
b

)

= (2π)n/2|A|−1/2 exp

(

−
1

2

(

c−
b
T
A

−1
b

4

))

.
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