Introduction to Photon Mapping

- Ray tracing cannot produce caustics.
- Radiosity cannot produce caustics.

Why is ray tracing insufficient?

Ray traced image using information from photon mapping

What can we use to improve the ray tracing method?

Ray tracing + radiosity or photon m

Shadows, refraction and caustics

- The problem:
 - the shadow ray strikes a transparent, refractive object
 - the ray tracing algorithm cannot trace backwards through objects to find light
 - so it returns "surface cannot see light"
- This destroys the validity of the boolean shadow test
- Similar problems occur with reflective objects

Some early solutions

- · Shadow attenuation
 - Assume transparent objects do not refract!
 - Does not produce caustics
 - But looks close to right for objects with little refraction.
- Distribution ray tracing (Cook et al., 1984)
 - Spawn a ray from the intersection point to randomly sample the BRDF
 - Need a lot (1,000 to 10,000) of rays per pixel to get this to give a good result.

Some more early solutions

- Backwards ray tracing (Arvo, 1986)
 - Trace rays from the lights ("backwards") rather than from the camera ("forewards")
 - Store the resulting intensity in texture maps attached to each object
 - Computationally expensive (lots of rays)
- Path tracing (Kajiya, 1986, Lafortune & Willems, 1993)
 - $\boldsymbol{\mathsf{-}}$ Do both backwards and forwards ray tracing
 - Connect the two together
 - Still computationally expensive

Why so expensive?

Images from http://www.thenologoners.com/tutorials/Glintro

Side-by-side comparison

Ray tracing + photon mapping

Path tracing with 1000 rays (paths) per pixel

Faster (30 seconds)

Slower (30 minutes)

Images from http://graphics.ucsd.edu/~henrik/

Global Illumination: Photon mapping

- emit photons into a scene
- trace their paths probabilistically
- build a "photon map": a data structure that describes the illumination of the scene independent of its geometry
- combine the photon map data with ray tracing to compute the global illumination of the scene.

Photon mapping—Algorithm (1/2)

- 1. Photon scattering
- Photons are fired from each light source, scattered in randomlychosen directions. The number of photons per light is a function of its surface area and brightness.
- Photons fire through the scene (use your ray-tracing code).
 Where they strike a surface they are either absorbed, reflected or refracted.
- Wherever energy is absorbed, cache the 3D location, the direction and the energy of the photon in the photon map.

Photon mapping algorithm (2/2)

- 2. Rendering
- Ray trace the scene from the point of view of the camera.
- For each first contact point P use the ray tracer for specular but compute diffuse from the photon map and do away with ambient completely.
- Compute radiant illumination by summing the contribution along the eye ray of all photons within a sphere of radius r of P.
- Caustics can be calculated directly here from the photon map. For speed, the caustic map is usually distinct from the radiance map.

Images from http://web.cs.wpi.edu/~emmanuel/courses/cs563/

Photon mapping

- This method is an example of Monte Carlo integration, in which a difficult integral (the lighting equation) is simulated by randomly sampling values from within the integral's domain until enough samples average out to about the right answer
- This means that you're going to be firing millions of photons. Your data structure is going to have to be very space-efficient!

http://www.okino.com/conv/imp_jt.htm

Image from http://graphics.ucsd.edu/-henrik/

Photon mapping: some details

- · Initial photon direction is random. Constrained by light shape, but random.
- What exactly happens each time a photon hits a solid also has a random component:
- Based on the diffuse reflectance, specular reflectance and transparency of the surface, compute probabilities p_d , p_s and p_t where $(p_d+p_s+p_t)\leq 1$. This gives a probability map:

• Choose a random value $p \in [0,1]$. Where p falls in the probability map of the surface determines whether the photon is reflected, refracted or absorbed.

Photon mapping gallery

References

- Radiosity
 - nVidia: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
 - Cornell: http://www.graphics.cornell.edu/online/research/
 - Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, "A Ray Tracing Algorithm for Progressive Radiosity." In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315–324.
 - Buss, "3-D Computer Graphics: A Mathematical Introduction with OpenGL" (Chapter XI), Cambridge University Press (2003)
- Photon mapping
 Henrik Jenson, "Global Illumination using Photon Maps", http://graphics.ucsd.edu/~henrik/
 Zack Waters, "Photon Mapping", http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html