
CST Part II Types: Exercise Sheet

ML Polymorphism

Exercise 1. Here are some type checking problems, in the sense of Slide 7. Prove the
following typings hold for the Mini-ML type system:

! λx(x :: nil) : ∀α (α→ α list)

! λx(case x of nil=> true |x1 :: x2 => false) : ∀α (α list → bool)

! λx1(λx2(x1)) : ∀α1,α2 (α1→ (α2→ α1))

! let f = λx1(λx2(x1)) in f f : ∀α1,α2,α3 (α1→ (α2→ (α3→ α2))).

Exercise 2. Show that if { } ! M : σ is provable, then M must be closed, i.e. have no free
variables. [Hint: use rule induction for the rules on Slides 16–19 to show that the provable
typing judgements, Γ !M : τ , all have the property that fv(M) ⊆ dom(Γ).]

Exercise 3. Let σ and σ′ be Mini-ML type schemes. Show that the relation σ % σ′ defined
on Slide 27 holds if and only if

∀ τ (σ′ % τ ⇒ σ % τ).

[Hint: use the following property of simultaneous substitution:

(τ [τ1/α1, . . . , τn/αn])[%τ
′/%α′] = τ [τ1[%τ

′/%α′]/α1, . . . , τn[%τ
′/%α′]/αn]

which holds provided the type variables %α′ do not occur in τ .]

Exercise 4. Try to augment the definition of pt on Slide 30 and in Figure 3 with clauses for
nil, cons, and case-expressions.

Exercise 5. Suppose M is a closed expression and that (S, σ) is a principal solution for the
typing problem { } ! M : ? in the sense of Slide 27. Show that σ must be a principal type
scheme for M in the sense of Slide 23.

Exercise 6. Show that if Γ ! M : σ is provable and S ∈ Sub is a type substitution, then
S Γ !M : S σ is also provable.

Polymorphic Reference Types

Exercise 7. Letting M denote the expression on Slide 33 and { } the empty state, show that
〈M, { }〉 →∗ FAIL is provable in the transition system defined in Figure 4.

Exercise 8. Give an example of a Mini-ML let-expression which is typeable in the type
system of Section 2.1, but not in the type system of Section 3.2 for Midi-ML with the value-
restricted rule (letv).



Polymorphic Lambda Calculus

Exercise 9. Give a proof inference tree for (8) in Example 4.1.1. Show that

∀α1 (α1→∀α2 (α2))→ bool list

is another possible polymorphic type for λf((f true) :: (f nil)).

Exercise 10. Show that if Γ ! M : τ and Γ ! M : τ ′ are both provable in the PLC type

system, then τ = τ ′ (equality up to α-conversion). [Hint: show that H
def
= {(Γ,M, τ) | Γ !

M : τ & ∀ τ ′ (Γ !M : τ ′ ⇒ τ = τ ′)} is closed under the axioms and rules on Slide 45.]

Exercise 11. In PLC, defining the expression letx = M1 : τ inM2 to be an abbreviation
for (λx : τ (M2))M1, show that the typing rule

Γ !M1 : τ1 Γ, x : τ1 !M2 : τ2

Γ ! (let x = M1 : τ1 inM2) : τ2
if x /∈ dom(Γ)

is admissible—in the sense that the conclusion is provable if the hypotheses are.

Exercise 12. The erasure, erase(M), of a PLC expression M is the expression of the
untyped lambda calculus obtained by deleting all type information from M :

erase(x)
def
= x

erase(λx : τ (M))
def
= λx (erase(M))

erase(M1 M2)
def
= erase(M1) erase(M2)

erase(Λα (M))
def
= erase(M)

erase(M τ)
def
= erase(M).

(i) Find PLC expressions M1 and M2 satisfying erase(M1) = λx (x) = erase(M2) such that
!M1 : ∀α (α→ α) and !M2 : ∀α1 (α1→∀α2 (α1)) are provable PLC typings.

(ii) We saw in Example 4.2.6 that there is a closed PLC expression M of type ∀α (α)→∀α (α)
satisfying erase(M) = λ f (f f). Find some other closed, typeable PLC expressions with
this property.

(iii) [For this part you will need to recall, from the CST Part IB Foundations of Functional

Programming course, some properties of beta reduction of expressions in the untyped lambda
calculus.] A theorem of Girard says that if ! M : τ is provable in the PLC type system,
then erase(M) is strongly normalisable in the untyped lambda calculus, i.e. there are no
infinite chains of beta-reductions starting from erase(M). Assuming this result, exhibit an
expression of the untyped lambda calculus which is not equal to erase(M) for any closed,
typeable PLC expression M .

Exercise 13. Prove the various typings and beta-reductions asserted in Example 4.4.4.



Exercise 14. Prove the various typings asserted in Example 4.4.5 and the beta-conversions
on Slide 56.

Exercise 15. For the polymorphic product type α1 ∗ α2 defined in the right-hand column of
Figure 5, show that there are PLC expressions Pair , fst , and snd satisfying:

{ } ! Pair : ∀α1,α2 (α1→ α2→ (α1 ∗ α2))

{ } ! fst : ∀α1,α2 ((α1 ∗ α2)→ α1)

{ } ! snd : ∀α1,α2 ((α1 ∗ α2)→ α2)

fst α1 α2(Pair α1 α2 x1 x2) =β x1

snd α1 α2(Pair α1 α2 x1 x2) =β x2.

Exercise 16. [hard] Suppose that τ is a PLC type with a single free type variable, α. Suppose
also that T is a closed PLC expression satisfying

{ } ! T : ∀α1,α2 ((α1→ α2)→ (τ [α1/α]→ τ [α2/α])).

Define ι to be the closed PLC type

ι
def
= ∀α ((τ → α)→ α).

Show how to define PLC expressions R and I satisfying

{ } ! R : ∀α ((τ → α)→ ι→ α)

{ } ! I : τ [ι/α]→ ι

(Rα f)(I x)→∗ f (T ι α (Rα f) x).




