Topics in Concurrency

Lecture 2

Jonathan Hayman

18 February 2013

Interface diagrams

@ Interface diagrams describe the channels used by processes for input
and output.

@ The use of a channel by a process is called a port.

@ Example: process P inputs on «, 8 and outputs on «, 7.
7

37 !

ol

@ Later examples: links between processes to represent the possibility
of communication

The Calculus of Communicating Systems

Introduced by Robin Milner in 1980

First process calculus developed with its operational semantics
Supports algebraic reasoning about equivalence

Simplifies Dijkstra's Guarded Command Language by removing the

store (store locations can be encoded as processes)

Syntax of CCS

Processes communicate by sending values (numbers) on channels.

@ Expressions: Arithmetic a and Boolean b

@ Processes:
p = il

| (m—p)

| (ala—p)

| (a?x — p)

| (b—p)

| po+pr

| poll Pt

| p\L

| pIf]

‘ P(alv"'ﬂak)

@ Process definitions:

nil process

silent/internal action

output

input

Boolean guard

non-deterministic choice

parallel composition

restriction (L a set of channel identifiers)
relabelling (f a function on channel identifiers)
process identifier

def

P(Xla"' 7Xk) = p

(free variables of p C {xy,---

) Xn})

Restriction and relabelling: interface diagrams

e p\ L: Disallow external interaction on channels in L

7

587

@ p[f]: Rename external interface to channels by f

7

!

restrict: \{a} 57

rename: {a+— «a, 3 — 8,7~ B}

87 o

al

@ Restriction

A
p=p

p\L pL
o Relabelling

where f is extended to labels as f(7)t = 7 and f(a?n) = f(a)?n and

f(aln) =f(a)ln
o ldentifiers

@ Nil process no rules

where if A\=a?nor A=alnthen a & L

A !
p=p

plf]

plar/x, -+

CON p'[f]

A
yan/xn] = p'

Plar,

A
van) = p'

87

al

Operational semantics of CCS

e Guarded processes

(r—=p)=p
a—n .
af‘n
(ala—p) 22 p (a?x — p) — p[n/x]
b — true p 2 p’
(b— p) = p'
e Sum
Ay A
Po — Pg P11 — Pz
A A
po + pP1 = Py po + p1 = Py
o Parallel composition
A ? !
Po = pp Po = py p1—> p}

A T
po |l 1= Py || p1 po |l Pr — po || P

A / aln a?n
PL= P Po— P PL— P

A
poll p1 = po |l pf po || pr = P || PL

A simple derivation from the operational semantics

(a3 = nil) 225 nil

(a!3 = nil) + P 25, nil

((a13 = nil) + P) || (7 = nil) 225 nil || (— nil) (a?x — nil) 22 nil

(13 = nil) + P || (r — nil)) || (a?x — nil) Z> (nil || (r — nil)) | nil

(((a!3 = nil + P) || 7 — nil) || a?x — nil) \ {a} = ((nil || 7 — nil) || nil) \ {a}

Final line: parallel composition is left-associative

Further examples

(Write . for —)
Each step justified by a derivation:

a!2.nil 4 B13.nil

nil nil

@ External choice

7.a12.nil 4+ 7.813.nil

T

@ Internal choice

al2.nil £13.nil
T\L \Lﬁ!?)
nil nil

Conditionals

@ Encoding of conditionals:
if b then pg else p1 = (b — po) + (=b — p1)
@ Example: Maximum of two inputs
in?x — (in?y —
(x<y— maxly

|
y < x— maxlx))

in? max!

11/20

@ Mixed choice al2.nil 4+ 7.813.nil
nil 613.nil
iﬂ!?;
nil
@ Exercise:
al3.nil || a?x.81x.nil
@ Exercise:
(a!3.nil || a?x.6x.nil) \ {a}
@ Exercise:
(a?x.nil || p14) [— B, B — []
@ Exercise:

P(0) where P(x) €' x <2 = alx — P

Linking processes

Connect p's output port to g's input port:

in? out! in? out!

in? out!

Definition:
p" q = (plc/out] || qle/inl) \ c

where ¢ is a fresh channel name

Buffers

@ Definition:

def .
lef . 2 |
B = in?x — (out!'x — B) in? out!
@ n-ary buffer
B"B"..."B

| —
n times

@ Exercise: Draw the transition system for B™ B

Remember: p™ g = (p[c/out] || q[c/in]) \ ¢

Euclid’s algorithm in CCS

Interface:

ged!
Implementation:

E(x,y) def x =y — gcd!x — nil

+ x<y— E(x,y —x)
+ y<x—=E(x—-y,x)

Euclid %' in?2x — infy — E(x,y)

Buffer with acknowledgements

@ Definition:
def . .
D = in?x — out!'x — ackout? — ackin! — D

in? out!

ackin? ackout!

@ Chaining now establishes two links:

in? out!
D™D

ackin? ackout!

@ How would this differ from the following process?

def . .
D' = in?x — ackin! — out!x — ackout? — D'

Euclid's algorithm in CCS (without parameterized
processes)

def .
Step = in?x —
in?y —

(x =y — ged!x — nil)
+

(x <y — out!x — out!(y — x) — nil)
+

(y < x — out!(x — y) — outly — nil)

Euclid Step "' Euclid

Towards a more basic language Pure CCS

. . @ Actions: a, b, c, ...
@ Transitions for value passing carry labels 7, a?n, a'n) _
e Complementary actions: 3, b, C, ...
a?x — p 220, p[0/x] @ Internal action: 7
@ Notational convention: 3= a
a?n @ Processes:
Pln/x] p = Ap prefix A ranges over T, a, a
for any action label a
| Die/pi sum | is an indexing set
| pollpr parallel
@ This suggests introducing prefix a?n.p (as well as a!n.p) and view | p\L restriction L a set of channel identifiers
a?x — pasasum y_ a?n.p[n/x] R | p[f] relabelling f a function on channel identifiers
infinite sum | P process identifier
@ View a?n and a!n as complementary actions
@ Synchronization can only occur on complementary actions @ Process definitions: p def
=p
17 /20 18 /20
Transition rules for Pure CCS
@ Restriction
@ Nil process no rules Ao -
p=p AELUL T =
e Guarded processes X where L = {a|a€ L}
- p\L=p'\L
PP o Relabelling
@ Sum A
A . A
pp—>p eI PP
; A
> iel Pi = Apo plfl — p'[f]
e Parallel composition where f is a function such that f(7) = 7 and f(3) = f(a)
po 2 P} pr 2 pl o Identifiers . »
A A Sp P =
poll pr=poll p1 po |l pr = po |l Pt A S :
P = p
a ’ a ’
Po — Po p1 — Py

po || p1 L>P6 | Pi

19/20 20/20

