Topics in Concurrency

Jonathan Hayman

15 February 2013

Concurrency and distribution

o Computation is becoming increasingly distributed, concurrent and
interactive

e boundaries of computation becoming increasingly unclear,
e behaviour of systems increasingly difficult to reproduce

@ ~~ problems such as how to structure and understand distributed
computation, how to ensure correctness (e.g. security) of processes
in an uncontrolled environment

@ Concurrency theory is a broad and active field for research, but

@ Present ideas of process and logics for distributed computation are
too crude to address all problems ...

Concurrency and distribution

o Computation is becoming increasingly distributed, concurrent and
interactive

e boundaries of computation becoming increasingly unclear,
e behaviour of systems increasingly difficult to reproduce

@ ~~ problems such as how to structure and understand distributed
computation, how to ensure correctness (e.g. security) of processes
in an uncontrolled environment

@ Concurrency theory is a broad and active field for research, but

@ Present ideas of process and logics for distributed computation are
too crude to address all problems ... However there are attempts:

topics in concurrency

@ Theories of processes, logics & model checking, security, mobility

Topics in Concurrency

@ Simple parallelism and non-determinism
@ Communicating processes

e Milner's CCS (Calculus of Communicating Systems)
e Bisimulation

Specification logics for processes

e modal p-calculus
o CTL
e model checking [Concurrency workbench]

@ Petri nets

e events, causal dependence, independence

Mobile processes

o Higher-order processes: process passing, location

Security protocols

o SPL (Security Protocol Language)
o Petri net semantics
o Proofs of secrecy and authentication

Chapter 1 in the lecture notes revises relevant topics from Discrete
Mathematics (well-founded induction and Tarski's fixed point theorem).

While programs

c:=skip| X :=a|if bthen ¢; else ¢ | ¢p;¢1 | while bdo ¢

@ States o € ¥ are functions from locations to values
e Configurations: (c,o) and o

@ Rules describe a single step of execution:

(co,0) = (cb,0) (co,0) = o’
(co; c1,0) = (¢ cr,0") (co; c1,0) = {c1,0")
(b, — true (c,o) = (', o)

(while b do c,0) — (c’;while b do c,o’)

Parallel commands

Syntax extended with parallel composition:
CZZ:...|C0 H C1

Rules:

(+4rules for termination of co, c1)

Parallel commands

Syntax extended with parallel composition:
CZZ:...|C0 H C1

Rules:
(co,0

) = (

(coll er,0) = {cq || c1,07)
) = (
) =

<C1,0'

(co |l c1,0
(+4rules for termination of co, c1)
@ Parallelism ~ Non-determinism

@ Behaviour of ||-commands not a partial function from states to
states; when are two ||-commands equivalent? [Congruence?]

@ Parallelism by non-deterministic interleaving

@ “communication by shared variables”

Study of parallelism (or concurrency)
includes
study of non-determinism

Study of parallelism (or concurrency)
includes
study of non-determinism

What about the converse?

Can we explain parallelism (or concurrency)
in terms of non-determinism?

The language of Guarded Commands (Dijkstra)

@ Boolean expressions: b
@ Arithmetic expressions: a

e Commands:
c::=skip|abort | X :=a| ;¢ | if gc fi | do gc od

@ Guarded commands:

b—c guard
| g || ga alternative

8C

Operational semantics

@ Assume given rules for evaluating Booleans and assignments.

@ Guarded commands:
(b,o) — true
(b—c,o) = (c,0o)

Operational semantics

@ Assume given rules for evaluating Booleans and assignments.

@ Guarded commands:
(b,o) — true
(b—c,o) = (c,0o)

(gco,0) = (c,0") (gc1,0) = (c,a’)

(8o | gc1,0) = {c,0’) (gco [gc1,0) — (c,0”)
introduces non-determinism

Operational semantics

@ Assume given rules for evaluating Booleans and assignments.

@ Guarded commands:
(b,o) — true
(b—c,o) = (c,0o)

(gco,0) = (c,0") (gc1,0) = (c,a’)
(g [ger,0) = {c,0’) (gco | gc1,0) — {c,0’)
(b,o) — false

(b— c,o) — fall
fail is a new configuration
(gco, o) — fail (gcr, o) — fail

(gco [| ger, 0) — fall

Operational semantics

@ Assume given rules for evaluating Booleans and assignments.

@ Guarded commands:
(b,o) — true
(b—c,o) = (c,0o)

(gco,0) = (c,0") (gc1,0) = (c,a’)

(gco [ger,0) = {c,0) (gco [gar,) = (¢, 0)
(b,o) — false
(b— c,o) — fall

(gco, o) — fail (gcr, o) — fail
(gco [| ger, 0) — fall

e Commands:
abort has no rules
o Conditional:
(gc,0) = {c,o’)
(if gc fi, o) = {c,d’)
no rule in case (gc, o) — fail; then conditional behaves like abort

e Loop:
(gc, o) — fall
(do gc od,0) = o

(gc,0) = {(c,0’)
(do gc od, o) — {c;do gc od,d”’)
in case (gc, o) — fail, the loop behaves like skip:

(skip,0) = o

The process
do bléclﬂ...ﬂbn%CnOd

is a form of (non-deterministically interleaved) parallel composition

[all e~ el

in which each ¢; occurs atomically (i.e. uninterruptedly) provided b;
holds each time it starts

UNITY (Misra and Chandy)
Hardware languages (Staunstrup)

Examples

e Computing maximum:

if
X >Y = MAX = X
[

Y>X—>MAX=Y
fi

@ Euclid’s algorithm:

do
X>Y = X=X-Y

Y>X—->Y=Y-X
od

Examples

e Computing maximum:

if
X>Y = MAX =X
[
Y>X - MAX=Y
fi
@ Euclid’s algorithm:
Have
do {X=mAY=nAm>0An>0}
X>Y > X=X-Y Euclid
| {X=Y = gcd(m,n)}
Y>X—=-Y=Y-X
od ... guarded commands support a

neat Hoare-style logic

@ Invariant:
ged(m, n) = ged(X,Y)

On exiting loop, X =Y.
o Key properties:

ged(m,n) = gecd(m—n,n) ifm>n
ged(m,n) = gcd(m,n—m) ifn>m
ged(m,m) = m
@ Recalling:
ged(m,n) | m,n
and

¢l mn = (| ged(m,n)

Synchronized communication (Hoare, Milner)

handshake. jpg

Communication by “handshake”,
with possible exchange of value,
localised to process-process (CSP)
or to a channel (CCS, OCCAM)

[Abstracts away from the protocol underlying coordination/ “handshake”
in the implementation]

Extending GCL with synchronization

@ Allow processes to send and receive values on channels

ala evaluate expression a and send value on channel a
a?X receive value on channel o and store it in X

All interaction between parallel processes is by sending / receiving
values on channels

Communication is synchronized and unicast

Allow send and receive in commands ¢ and in guards gc:

do Y <100ANa?X —al(X«X)||Y:=Y+1 odis allowed
—_——

8¢ c

Language close to OCCAM and CSP

Extending GCL with synchronization

Transitions now carry labels.

(a,0) = n
(a?X,0) LIUN o[n/X] (ala, o) o .
A o
AN .
{0, 7) _ {0, o) (A might be empty label) -+ symmetric
(co |l c1,0) = (cp || a1, 07)

? !
(c0,0) == (g, 0 (c1,0) == (c],0) +symmetric

(@ | e1,0

{¢,0)
{c\a,0)

)
o) = (e [l e1,07)

A ,
— (o) AZalnoraln
i>< \ a, o)

Examples

o forwarder:

do a?X — (! Xod

(doa?X — B!X od
| do 57X — 41X od)\

o buffer capacity 2:

Branching: internal vs external choice

@ Extend the language, allowing Booleans to be attached to
input/output actions

o Compare:

if (true Na?X —) || (true A 57X —) i

a?,y ’ \B?m

if (true — (a?X; @) [(true — (57X, c1)) £i

(x?n/ ’ \f?m

@ Not equivalent processes w.r.t. their deadlock capabilities.

