
The software development process

A personal view

Robert Brady

Summary

 Why bother?

 Early (procedural) approach

 Seminal research on complexity (IBM 1984)

 The first revolution – IBM vs Microsoft
 Sophisticated tools (objects etc.)

 Agile and SCRUM (last 5 years)

 Test-oriented development?

Why bother?

λ “Recruit great developers”
- They are 10-50 times more productive than average developers
- who are 10-50 times more productive than poor developers

λ  “The process is secondary”

First revolution - IBM vs Microsoft

• According to “Big Blues: the Unmaking of IBM”:-
– In the late 1980’s, IBM lost $70 billion of stock value
– and gave an entire market away to a small company
– Mainly because it couldn’t write software effectively.

• But IBM “did it right”. It followed all the standard rules taught
in computer science courses at the time:

– Get the design right before you write the code
– Write complete documentation
– Get it right first time
– Use formal methods, design walk-throughs etc. to satisfy
yourself that the code is bug-free, before release
– Regard other methods (eg Microsoft’s) as “hacking”

• So what went wrong?

Size is important

0.1-1kb Typical punch-card program
 The IBM development method was
 probably developed for this type of program

2kb-10kb Typical software module/class
 Typical computer science project(?)

16kb Operating system of Sinclair Spectrum
200kb Our first software product – 1986
18 Mb Human Genome – active code

 (30k genes * protein size 800)
 Number varies from year to year

20Mb Our current software product (~20b per line)
750Mb Human genome - including rubbish code

 (3 x 109 base-pairs)
4Gb Windows Vista and associated products
218Gb Storage on my laptop

IBM: seminal measurements 1984

10^5 Years mean time to failure (log scale) 10 days

Number of bugs
(log scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

power law=key signature of complexity

IBM: seminal measurements 1984

10^5 Years mean time to failure (log scale) 10 days

Number of bugs
(log scale)
UNSCALED

Adams E. N., Optimising
preventive maintenance of
software products, lBM
Journal of Research &
Development, Vol. 28,
issue 1 pp 2–14 (1984)

Bugs in unnamed mainframe
operating system

Period Average bugs MTTF

10-20d 15d 1 15d

20-40d 30d 2 15d

40-80d 60d 4 15d

Hard-to-find bugs dominate

Organising the code

Waterfall model

Design

Deploy

Code

Test

Mainstay of development process
Good for small modules or sub-units,
particularly if you can have simple and
well-specified interface.
Be careful

 Different people for each stage =
 lost information = failure
 Microsoft at one stage: “We don’t
 have programmers, we have
 developers”

Ideal process
 Sit with a user
 Agree small issues/problems
 Fix some yourself (nobody else)

Prototyping

 Good where there are significant
project risks or unknowns
e.g. external software, new techniques
or methods, or can’t decide between
alternatives

Not very predictable
a big problem in contracted
developments

“Playcode” it

Amend or reject it

Test and deploy it

Review it

Evolutionary model

Waterfall
model

changes

Prototyping
model

changes

l Small Bug-
fixes

Integration;
manual and

automated tests
l Review for

release

Deploy

Version control
system

Organising the project

Problem with waterfall projects:
1. Unused features

Actual use of requested features [Johnson02]

always, 7%

sometimes,
16%

often, 13%

rarely, 19%

never, 45%

Problem with waterfall projects:
2. Project length/success profile

Project length vs. success [Johnson98]

Scrum methodology

Scrum framework

• Product owner

• ScrumMaster

• Team

Roles

• Sprint planning

• Sprint review

• Sprint retrospective

• Daily scrum meeting

Ceremonies

• Product backlog

• Sprint backlog

• Burndown charts

Artifacts

The daily scrum

Parameters
 Daily
 15-minutes
 Stand-up

Not for problem solving
 Whole world is invited
 Only team members, ScrumMaster, product owner, can
 talk

Helps avoid other unnecessary meetings

Test-oriented development

Experimental (for us)

Requirements – design – develop – test
miscommunication throughout the chain
testing at the end so it suffers most

Requirements – design – test – develop
test engineer is part of the development team
Tests run automatically with each daily build

Summary

Why bother?

Early (procedural) approach

Seminal research on complexity (IBM 1984)

The first revolution – IBM vs Microsoft
Sophisticated tools (objects etc.)

Agile and SCRUM (last 5 years)

Test-oriented development?

