Definition

A language is *regular* iff it is the set of strings accepted by some deterministic finite automaton.

Kleene’s Theorem

(a) *For any regular expression* \(r \), \(L(r) \) *is a regular language* (cf. Slide 8).

(b) *Conversely, every regular language is the form* \(L(r) \) *for some regular expression* \(r \).
NFAs for atomic regular expressions

just accepts the one-symbol string a

just accepts the null string, ε

accepts no strings
Set of accepting states is union of Accept_{M_1} and Accept_{M_2}.
Set of accepting states is Accept_{M_2}.
The only accepting state of $Star(M)$ is q_0.