Regular Languages
and Finite Automata

8 lectures for CST Part IA

Prof. Andrew Pitts
Andrew.Pitts@cl.cam.ac.uk, WGB FC08

Course web page:
www.cl.cam.ac.uk/teaching/1213/RLFA/
What happens if, at a Unix/Linux shell prompt, you type

```
ls *
```

and press return?

Suppose the current directory contains files called `regfla.tex`, `regfla.aux`, `regfla.log`, `regfla.dvi`, and (strangely) `.aux`. What happens if you type

```
ls *.aux
```

and press return?
Alphabets

An **alphabet** is specified by giving a finite set, \(\Sigma \), whose elements are called **symbols**. For us, any set qualifies as a possible alphabet, so long as it is finite.

Examples:
\[
\Sigma_1 = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \quad \text{— 10-element set of decimal digits.}
\]
\[
\Sigma_2 = \{a, b, c, \ldots, x, y, z\} \quad \text{— 26-element set of lower-case characters of the English language.}
\]
\[
\Sigma_3 = \{S \mid S \subseteq \Sigma_1\} \quad \text{— } 2^{10}\text{-element set of all subsets of the alphabet of decimal digits.}
\]

Non-example:
\[
\mathbb{N} = \{0, 1, 2, 3, \ldots\} \quad \text{— set of all non-negative whole numbers is not an alphabet, because it is infinite.}
\]
Strings over an alphabet

A **string of length** n (≥ 0) over an alphabet Σ is just an ordered n-tuple of elements of Σ, written without punctuation.

Example: if $\Sigma = \{a, b, c\}$, then a, ab, aac, and $bbac$ are strings over Σ of lengths one, two, three and four respectively.

$$\Sigma^* \overset{\text{def}}{=} \text{set of all strings over } \Sigma \text{ of any finite length.}$$

N.B. there is a unique string of length zero over Σ, called the **null string** (or **empty string**) and denoted ε (no matter which Σ we are talking about).
The *concatenation* of two strings $u, v \in \Sigma^*$ is the string uv obtained by joining the strings end-to-end.

Examples: If $u = ab$, $v = ra$ and $w = cad$, then $vu = raab$, $uu = abab$ and $wv = cadra$.

This generalises to the concatenation of three or more strings. E.g. $uvwuv = abracadabra$.
Regular expressions over an alphabet Σ

- each symbol $a \in \Sigma$ is a regular expression
- ε is a regular expression
- \emptyset is a regular expression
- if r and s are regular expressions, then so is $(r|s)$
- if r and s are regular expressions, then so is rs
- if r is a regular expression, then so is $(r)^*$

Every regular expression is built up inductively, by finitely many applications of the above rules.

(N.B. we assume ε, \emptyset, (,), |, and * are not symbols in Σ.)
Matching strings to regular expressions

- u matches $a \in \Sigma$ iff $u = a$
- u matches ε iff $u = \varepsilon$
- No string matches \emptyset
- u matches $r|s$ iff u matches either r or s
- u matches rs iff it can be expressed as the concatenation of two strings, $u = vw$, with v matching r and w matching s
- u matches r^* iff either $u = \varepsilon$, or u matches r, or u can be expressed as the concatenation of two or more strings, each of which matches r
Examples of matching, with $\Sigma = \{0, 1\}$

- $0|1$ is matched by each symbol in Σ
- $1(0|1)^*$ is matched by any string in Σ^* that starts with a ‘1’
- $((0|1)(0|1))^*$ is matched by any string of even length in Σ^*
- $(0|1)^*(0|1)^*$ is matched by any string in Σ^*
- $(\varepsilon|0)(\varepsilon|1)|11$ is matched by just the strings ε, 0, 1, 01, and 11
- $\emptyset1|0$ is just matched by 0
Languages

A (formal) language \(L \) over an alphabet \(\Sigma \) is just a set of strings in \(\Sigma^* \). Thus any subset \(L \subseteq \Sigma^* \) determines a language over \(\Sigma \).

The language determined by a regular expression \(r \) over \(\Sigma \) is

\[
L(r) \overset{\text{def}}{=} \{ u \in \Sigma^* \mid u \text{ matches } r \}.
\]

Two regular expressions \(r \) and \(s \) (over the same alphabet) are equivalent iff \(L(r) \) and \(L(s) \) are equal sets (i.e. have exactly the same members).
Some questions

(a) Is there an algorithm which, given a string u and a regular expression r (over the same alphabet), computes whether or not u matches r?

(b) In formulating the definition of regular expressions, have we missed out some practically useful notions of pattern?

(c) Is there an algorithm which, given two regular expressions r and s (over the same alphabet), computes whether or not they are equivalent? (Cf. Slide 8.)

(d) Is every language of the form $L(r)$?