
Multicore Semantics and Programming
(Lecture 2)

Peter Sewell Tim Harris
Mark Batty

University of Cambridge Oracle

October – November, 2012

– p. 1

Caution: Not All of x86

Coherent write-back memory (almost all user and OS code),
but assumed

no exceptions

no interrupts

no misaligned or mixed-size accesses

no ‘non-temporal’ operations

no device memory

no self-modifying code

no page-table changes

– p. 2

For example

Open Question: is every memory write guaranteed to
eventually propagate from store buffer to shared memory?

We tentatively assume so (with a progress condition on
machine traces).

AMD: yes

Intel: unclear

ARM: yes

– p. 3

What is a Mutex?

– p. 4

Extending the Tiny Language
location, x , m address
integer , n integer
thread id , t thread id

expression, e ::= expression
| n integer literal
| x read from address x

| x = e write value of e to address x

| e; e ′ sequential composition
| e + e ′ plus
| lock x lock mutex at address x

| unlock x unlock mutex at address x

– p. 5

Extending the Semantics
Don’t mix addresses used for locks and other addresses.

Say lock is free if it holds 1, taken otherwise.

Informal semantics: lock x has to atomically

1. check the mutex is currently free,

2. change its state to taken, and

3. let the thread proceed.

unlock x has to change its state to free.

– p. 6

Extending the Semantics

e
l
−→ e

′
e does l to become e

′

lock x
LOCK x
−−−−→ 0

LOCK

unlock x
UNLOCK x
−−−−−−→ 0

UNLOCK

M
t:l
−→ M

′
M does t : l to become M

′

M (x) = n

M
t:R x=n
−−−−−→ M

MREAD

M
t:W x=n
−−−−−→ M ⊕ (x 7→ n)

MWRITE

M (x) = 1

M
t:LOCK x
−−−−−→ M ⊕ (x 7→ 0)

MLOCK

M
t:UNLOCK x
−−−−−−−→ M ⊕ (x 7→ 1)

MUNLOCK

– p. 7

Using a Mutex
Recall the behaviour of t1:x = x + 1|t2:x = x + 7 for the initial
store {x 7→ 0}:

〈t1:1|t2:(x = x + 7), {x 7→ 1}〉
r

// •
+

// •
w

// 〈t1:1|t2:8, {ll 7→ 8}〉

〈t1:(x = 1)|t2:(x = x + 7), {x 7→ 0}〉

r

**UUUUUUUUUUUUUUUUU

w

44iiiiiiiiiiiiiiiii

〈t1:1|t2:(x = 7 + 0), {x 7→ 1}〉

+

**TTTTTTTTTTTTTTTT

〈t1:(x = 1 + 0)|t2:(x = x + 7), {x 7→ 0}〉

r

((QQQQQQQQQQQQ

+

66mmmmmmmmmmmm

〈t1:(x = 1)|t2:(x = 7 + 0), {x 7→ 0}〉

+

**UUUUUUUUUUUUUUUUU

w

44iiiiiiiiiiiiiiiii

〈t1:1|t2:(x = 7), {x 7→ 1}〉
w

// 〈t1:1|t2:7, {x 7→ 7}〉

〈t1:(x = x + 1)|t2:(x = x + 7), {x 7→ 0}〉

r

66mmmmmmmmmmmm

r
((QQQQQQQQQQQQ

〈t1:(x = 1 + 0)|t2:(x = 7 + 0), {x 7→ 0}〉

+

44iiiiiiiiiiiiiiiii

+
**UUUUUUUUUUUUUUUUU

〈t1:(x = 1)|t2:(x = 7), {x 7→ 0}〉

w

44jjjjjjjjjjjjjjjj

w
**TTTTTTTTTTTTTTTT

〈t1:(x = x + 1)|t2:(x = 7 + 0), {x 7→ 0}〉

r

66mmmmmmmmmmmm

+
((QQQQQQQQQQQQ

〈t1:(x = 1 + 0)|t2:(x = 7), {x 7→ 0}〉

+

44iiiiiiiiiiiiiiiii

w
**UUUUUUUUUUUUUUUUU

〈t1:x = 1|t2:7, {x 7→ 7}〉
w

// 〈t1:1|t2:7, {x 7→ 1}〉

〈t1:(x = x + 1)|t2:(x = 7), {x 7→ 0}〉

r

44iiiiiiiiiiiiiiiii

w

**UUUUUUUUUUUUUUUUU
〈t1:x = 1 + 0|t2:7, {x 7→ 7}〉

+

44jjjjjjjjjjjjjjjj

〈t1:x = x + 1|t2:7, {x 7→ 7}〉
r

// •
+

// •
w

// 〈t1:8|t2:7, {ll 7→ 8}〉

NB: the labels +, w and r in this picture are just informal hints as to how
those transitions were derived

– p. 8

Using a Mutex

Consider p =
t1:(lockm; x = x + 1; unlockm)|t2:(lockm; x = x + 7; unlockm)

in the initial store M = {x 7→ 0, m 7→ 1}:

〈t1:(1; x = x + 1; unlockm)|t2:(lockm; x = x + 7; unlockm), M ′〉
12

,,ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

〈p, M 〉

t1:lockm
22fffffffffffffffffffffffffff

t2:lockm

,,XXXXXXXXXXXXXXXXXXXXXXXXXXX 〈t1:n1|t2:n2, {x 7→ 8, m 7→ 1}〉

〈t1:(lockm; x = x + 1; unlockm)|t2:(1; x = x + 7; unlockm), M ′′〉

12

22dddddddddddddddddddddddddddddd

(where M ′ = M ⊕ (m 7→ 0))

– p. 9

Deadlock

lockm can block (that’s the point, after all).

Hence, you can deadlock.

p = t1:(lockm1; lockm2; x = 1; unlockm1; unlockm2)

| t2:(lockm2; lockm1; x = 2; unlockm1; unlockm2)

– p. 10

Lock Design

Record of which thread is holding a locked lock?

Re-entrancy?

Fairness?

Performance under contention? (backoff?)

– p. 11

Implementing Mutexes with x86 Spinlocks
Suppose register eax holds the address x , which holds 1 if the
lock is free or ≤ 0 if taken.

lock: LOCK DEC [eax]
JNS enter

spin: CMP [eax],0
JLE spin
JMP lock

enter:

critical section

unlock: MOV [eax]←1

From Linux v2.6.24.7

NB: don’t confuse levels — we’re using x86 LOCK’d instructions in implementations of Linux
– p. 12

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock
x = -1 critical spin, reading x

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock
x = -1 critical spin, reading x
x = 1 unlock, writing x

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock
x = -1 critical spin, reading x
x = 1 unlock, writing x
x = 1 read x

– p. 13

Spinlock Example (SC)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock
x = -1 critical spin, reading x
x = 1 unlock, writing x
x = 1 read x
x = 0 lock

– p. 13

Spinlock SC Data Race
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = 0 critical
x = -1 critical lock
x = -1 critical spin, reading x
x = 1 unlock, writing x

– p. 14

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = -1 unlock, writing x to buffer

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = -1 unlock, writing x to buffer
x = -1 . . . spin, reading x

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = -1 unlock, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = -1 unlock, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x

– p. 15

Spinlock Example (x86-TSO)
lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

Shared Memory Thread 0 Thread 1
x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = -1 unlock, writing x to buffer
x = -1 . . . spin, reading x
x = 1 write x from buffer
x = 1 read x
x = 0 lock

– p. 15

Data Race Freedom (DRF)

If all shared-memory accesses in a program are ‘properly
protected’ by locks, then it should be ‘race-free’.

Basic Principle (you’d hope):

If a program has no data races in any sequentially consistent
(SC) execution, then any relaxed-memory execution is
equivalent to some sequentially consistent execution.

NB: premise only involves SC execution.

– p. 16

Data Race Freedom (DRF)

If all shared-memory accesses in a program are ‘properly
protected’ by locks, then it should be ‘race-free’.

Basic Principle (you’d hope):

If a program has no data races in any sequentially consistent
(SC) execution, then any relaxed-memory execution is
equivalent to some sequentially consistent execution.

NB: premise only involves SC execution.

But what is a data race?
what does equivalent mean?

– p. 16

What is a data race — first attempt

Suppose SC executions are traces of events

t:Rx=n for thread t reading value n from address x

t:W x=n for thread t writing value n to address x

(erase τ ’s, and ignore mutexes and x86 locked instructions
and mfence for a moment)

Then say an SC execution has a data race if it contains a pair
of adjacent accesses, by different threads, to the same
location, that are not both reads:

. . ., t1:Rx=n1 , t2:W x=n2, . . .

. . ., t1:W x=n1 , t2:Rx=n2, . . .

. . ., t1:W x=n1 , t2:W x=n2, . . .

– p. 17

What is a data race — for x86

1. Need not consider write/write pairs to be races

2. Have to consider SC semantics for LOCK’d instructions
(and MFENCE), with events:

t:L at the start of a LOCK’d instruction by t

t:U at the end of a LOCK’d instruction by t

t:B for an MFENCE by thread t

3. Need not consider a LOCK’d read/any write pair to be a
race

Say an x86 data race is an execution of one of these shapes:

. . ., t1:Rx=n1 , t2:W x=n2, . . .

. . ., t1:Rx=n1 , t2:L,. . . ,t2:W x=n2, . . .

(or v.v. No t2:U between the t2:L and t2:W x=n2)
– p. 18

DRF Principle for x86-TSO
Say an x86 program is data race free (DRF) if no SC
execution contains an x86 data race.

Theorem 1 (DRF) If a program is DRF then any x86-TSO
execution is equivalent to some SC execution.

(where equivalent means that there is an SC execution with
the same subsequence of writes and in which each read
reads from the corresponding write)

Proof: via the x86-TSO axiomatic model
Scott Owens, ECOOP 2010

– p. 19

Triangular Races (Owens)

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race
... W y = v2
...

...
W x = v1 R x
...

...

– p. 20

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... W y = v2
...

...
W x = v1 R x
...

...

... W y = v2

...
...

W x = v1 W x = w
...

...

– p. 20

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... W y = v2
...

...
W x = v1 R x
...

...

... W y = v2

... mfence
W x = v1 R x
...

...

– p. 20

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... W y = v2
...

...
W x = v1 R x
...

...

... W y = v2

...
...

W x = v1 locked R x
...

...

– p. 20

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Not triangular race
... W y = v2
...

...
W x = v1 R x
...

...

... locked W y = v2

...
...

W x = v1 R x
...

...

– p. 20

Triangular Races

Read/write data race

Only if there is a bufferable write preceding the read

Triangular race Triangular race
... W y = v2
...

...
W x = v1 R x
...

...

... W y = v2

...
...

locked W x = v1 R x
...

...

– p. 20

TRF Principle for x86-TSO

Say a program is triangular race free (TRF) if no SC execution
has a triangular race.

Theorem 2 (TRF) If a program is TRF then any x86-TSO
execution is equivalent to some SC execution.

If a program has no triangular races when run on a
sequentially consistent memory, then

x86-TSO = SC

Lock

W
rite B

uffer

W
rite B

uffer

Shared Memory

Thread Thread

Lock Shared Memory

Thread Thread

– p. 21

Spinlock Data Race

lock:LOCK DEC [eax]; JNS enter
spin:CMP [eax],0; JLE spin; JMP lock
enter: ...critical section...
unlock:MOV [eax]←1

x = 1
x = 0 lock
x = -1 critical lock
x = -1 critical spin, reading x
x = 1 unlock, writing x

lock’s writes are LOCK’d

– p. 22

Program Correctness

Theorem 3 Any well-synchronized program that uses the
spinlock correctly is TRF.

Theorem 4 Spinlock-enforced critical sections provide mutual
exclusion.

– p. 23

Other Applications

A concurrency bug in the HotSpot JVM

Found by Dave Dice (Sun) in Nov. 2009

java.util.concurrent.LockSupport (‘Parker’)

Platform specific C++

Rare hung thread

Since “day-one” (missing MFENCE)

Simple explanation in terms of TRF

Also: Ticketed spinlock, Linux SeqLocks, Double-checked
locking

– p. 24

POWER and ARM

Susmit Sarkar, Luc Maranget, Jade Alglave,
Derek Williams, Peter Sewell

– p. 25

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed?: 1:r1=1 ∧ 1:r2=0 Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

– p. 26

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0 Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

– p. 26

Message Passing (MP) Again

MP Pseudocode

Thread 0 Thread 1

x=1 r1=y

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0 Test MP: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

po
rf

po

rf

Microarchitecturally: writes committed, writes propagated,
and/or reads satisfied out-of-order

– p. 26

Enforcing Order with Barriers

MP+dmb/syncs Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync dmb/sync

y=1 r2=x

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] DMB

DMB LDR R1,[R2]

MOV R1,#1

STR R1,[R3]

Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y

Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER

Thread 0 Thread 1

li r1,1 lwz r1,0(r2)

stw r1,0(r2) sync

sync lwz r3,0(r4)

li r3,1

stw r3,0(r4)

Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x

Forbidden: 1:r1=1 ∧ 1:r3=0

– p. 27

Enforcing Order with Barriers

MP+dmb/syncs Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync dmb/sync

y=1 r2=x

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

MP+dmbs ARM

Thread 0 Thread 1

MOV R0,#1 LDR R0,[R3]

STR R0,[R2] DMB

DMB LDR R1,[R2]

MOV R1,#1

STR R1,[R3]

Initial state: 0:R2=x ∧ 0:R3=y ∧ 1:R2=x

∧ 1:R3=y

Forbidden: 1:R0=1 ∧ 1:R1=0

MP+syncs POWER

Thread 0 Thread 1

li r1,1 lwz r1,0(r2)

stw r1,0(r2) sync

sync lwz r3,0(r4)

li r3,1

stw r3,0(r4)

Initial state: 0:r2=x ∧ 0:r4=y ∧ 1:r2=y

∧ 1:r4=x

Forbidden: 1:r1=1 ∧ 1:r3=0

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

MP Allow 10M/4.9G 6.5M/29G 1.7G/167G 40M/3.8G 138k/16M 61k/552M 437k/185M

MP+dmbs/syncs Forbid 0/6.9G 0/40G 0/252G 0/24G 0/39G 0/26G 0/2.2G

MP+lwsyncs Forbid 0/6.9G 0/40G 0/220G — — — —

– p. 27

Enforcing Order with Dependencies

Test MP+dmb/sync+addr’: Forbidden

Thread 0

a: W[x]=1

b: W[y]=&x

c: R[y]=&x

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

MP+dmb/sync+addr′ Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync

y=&x r2=*r1

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=&x ∧ 1:r2=0

– p. 28

Enforcing Order with Dependencies

Test MP+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

addr

rf

MP+dmb/sync+addr Pseudocode

Thread 0 Thread 1

x=1 r1=y

dmb/sync r3=(r1 xor r1)

y=1 r2=*(&x + r3)

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 1:r2=0

NB: your compiler will not understand this stuff!

– p. 28

Enforcing Order with Dependencies

Test MP+dmb/sync+ctrl: Allowed

Thread 0

a: W[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: R[x]=0

dmb/sync
rf

ctrl

rf

MP+dmb/sync+ctrl

Thread 0 Thread 1

x=1 r1=y

dmb/sync if (r1 == 1)

y=1 r2=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 1:r2=0

Fix with ISB/isync instruction between branch and second
read

– p. 28

Enforcing Order with Dependencies

Read-to-Read: address and control-isb/control-isync
dependencies respected; control dependencies not respected

Read-to-Write: address, data, and control dependencies all
respected

(all whether natural or artificial)

– p. 28

Core Semantics

Unless constrained, instructions can be executed out-of-order
and speculatively

i1 i2 i3 i4 i5

i6

i8

i7

i9

i10

i13

i11 i12

– p. 29

Iterated Message Passing and Cumulative Barriers

WRC-loop Pseudocode

Thread 0 Thread 1 Thread 2

x=1 while (x==0) {} while (y==0) {}

y=1 r3=x

Initial state: x=0 ∧ y=0

Forbidden?: 2:r3=0

– p. 30

Iterated Message Passing and Cumulative Barriers

Test WRC: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
po

rf
porf

WRC Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

y=1 r3=x

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

– p. 30

Iterated Message Passing and Cumulative Barriers

Test WRC+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
addr

rf
addrrf

WRC+addrs Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

*(&y+r1-r1) = 1 r3 = *(&x + r2 - r2)

Initial state: x=0 ∧ y=0

Allowed: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

– p. 30

Iterated Message Passing and Cumulative Barriers

Test WRC+dmb/sync+addr: Forbidden

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: W[y]=1

d: R[y]=1

Thread 2

e: R[x]=0

rf
dmb/sync

rf
addrrf

WRC+dmb/sync+addr Pseudocode

Thread 0 Thread 1 Thread 2

x=1 r1=x r2=y

dmb/sync r3 = *(&x + r2 - r2)

y=1

Initial state: x=0 ∧ y=0

Forbidden: 1:r1=1 ∧ 2:r2=1 ∧ 2:r3=0

– p. 30

Iterated Message Passing and Cumulative Barriers
POWER ARM

Kind PowerG5 Power6 Power7 Tegra3

WRC Allow 44k/2.7G 1.2M/13G 25M/104G 8.6k/8.2M

WRC+addrs Allow 0/2.4G 225k/4.3G 104k/25G 0/20G

WRC+dmb/sync+addr Forbid 0/3.5G 0/21G 0/158G 0/20G

WRC+lwsync+addr Forbid 0/3.5G 0/21G 0/138G —

ISA2 Allow 3/91M 73/30M 1.0k/3.8M 6.7k/2.0M

ISA2+dmb/sync+addr+addr Forbid 0/2.3G 0/12G 0/55G 0/20G

ISA2+lwsync+addr+addr Forbid 0/2.3G 0/12G 0/55G —

– p. 30

Independent Reads of Independent Writes

Test IRIW+addrs: Allowed

Thread 0

a: W[x]=1 b: R[x]=1

Thread 1

c: R[y]=0

Thread 2

d: W[y]=1 e: R[y]=1

Thread 3

f: R[x]=0

rf
addr

rf
addr

rf

rf

IRIW+addrs Pseudocode

Thread 0 Thread 1 Thread 2 Thread 3

x=1 r1=x y=1 r3=y

r2=*(&y+r1-r1) r4=*(&x+r3-r3)

Initial state: x=0 ∧ y=0 ∧ z=0

Allowed: 1:r1=1 ∧ 1:r2=0 ∧ 3:r3=1 ∧ 3:r4=0

Like SB, this needs two DMBs or syncs (lwsyncs not enough).
– p. 31

Storage Subsystem Semantics
Have to consider writes as propagating to each other thread

No global memory

RW

W

W

W

W
R

R

R

R W

W

W
W

W

W

W

W

W

W

W

W
W

W

W

W

W

W

W

W

Thread1

Memory1

M
em

ory
2

M
emory3M

em
or
y4

M
em

or
y 5

T
h
read

2

Thread3Th
rea
d4

T
h
re
ad

5

– p. 32

Load Buffering (LB)

Test LB: Allowed

Thread 0

a: R[x]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

po
rf rf

po

LB Pseudocode

Thread 0 Thread 1

r1=x r2=y

y=1 x=1

Initial state: x=0 ∧ y=0

Allowed: r1=1 ∧ r2=1

Fix with address or data dependencies:
POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

LB Allow 0/7.4G 0/43G 0/258G 1.5M/3.9G 124k/16M 58/1.6G 1.3M/185M

LB+addrs Forbid 0/6.9G 0/40G 0/216G 0/24G 0/39G 0/26G 0/2.2G

LB+datas Forbid 0/6.9G 0/40G 0/252G 0/16G 0/23G 0/18G 0/2.2G

LB+ctrls Forbid 0/4.5G 0/16G 0/88G 0/8.1G 0/7.5G 0/1.6G 0/2.2G

– p. 33

Coherence

Reads and writes to each location in isolation behave SC
CoRR1: rf,po,fr forbidden

Test CoRR1

Thread 0

a: W[x]=2 b: R[x]=2

Thread 1

c: R[x]=1

rf
po

rf

CoRW: rf,po,co forbidden

Test CoRW

Thread 0

a: R[x]=2

b: W[x]=1

c: W[x]=2

Thread 1

po
corf

CoWR: co,fr forbidden

Test CoWR

Thread 0

a: W[x]=1

b: R[x]=2

Thread 1

c: W[x]=2

po
co

rf

CoWW: po,co forbidden

Test CoWW: Forbidden

Thread 0

b: W[x]=2

a: W[x]=1

copo

CoRW1: po,rf forbidden

Test CoRW1: Forbidden

Thread 0

b: W[x]=1

a: R[x]=1

rfpo

– p. 34

Another Cautionary Tale: PPOAA/PPOCA

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

– p. 35

Another Cautionary Tale: PPOAA/PPOCA

Test PPOAA: Forbidden

Thread 0

a: W[z]=1

b: W[y]=1

c: R[y]=1

Thread 1

d: W[x]=1

e: R[x]=1

f: R[z]=0

dmb/sync
rf

addr

rf

addrrf

POWER ARM

Kind PowerG5 Power6 Power7 Tegra2 Tegra3 APQ8060 A5X

PPOCA Allow 1.1k/3.4G 0/49G 175k/157G 0/24G 0/39G 233/743M 0/2.2G

PPOAA Forbid 0/3.4G 0/46G 0/209G 0/24G 0/39G 0/26G 0/2.2G– p. 35

Basic Question
What is the concurrency semantics of Power/ARM
processors?

We’ve built a model...

[Susmit Sarkar, Jade Alglave, Luc Maranget, Derek Williams, PS]

...by a long process of

generating test cases

experimental testing of hardware

talking with IBM and ARM architects

checking candidate models

(Papers in POPL09, TPHOLs09, CAV10, POPL11, PLDI11,
POPL12, PLDI12, CAV12)

– p. 36

Operational Model
Operational abstract-machine model:

thread-local LTS (speculation)

storage subsystem LTS (propagation)

top-level LTS parallel composition of those

❇�✁✁✂✄✁ ✁✄☎✆✄✝✞

❙✟✠✡☛☞✌ ❙✍✎✏✑✏✟✌✒

❚✓✡✌☛✔❚✓✡✌☛✔

❲✁✂✞✄ ✁✄☎✆✄✝✞

❘✄�✕ ✁✄☎✆✄✝✞ ❘✄�✕ ✁✄✝✖✗✘✝✄

❇�✁✁✂✄✁ �✙✚

– p. 37

Coherence by Fiat
Suppose the storage subsystem has seen 4 writes to x:

w0

w2 w3

w1

w0

w2 w3

w1

Suppose just [w1] has propagated to tid and then tid reads x.

it cannot be sent w0, as w0 is coherence-before the w1 write that (because it is in the
writes-propagated list) it might have read from;

it could re-read from w1, leaving the coherence constraint unchanged;

it could be sent w2, again leaving the coherence constraint unchanged, in which case w2

must be appended to the events propagated to tid; or

it could be sent w3, again appending this to the events propagated to tid, which moreover
entails committing to w3 being coherence-after w1, as in the coherence constraint on the
right above. Note that this still leaves the relative order of w2 and w3 unconstrained, so
another thread could be sent w2 then w3 or (in a different run) the other way around (or
indeed just one, or neither).

– p. 38

Model States
Storage subsystem:

thread ids (set)

writes seen (set)

coherence (strict partial order over writes, per-address)

writes past coherence point (set)

events propagated to each thread (list of writes and
barriers)

Thread:

initial register state

tree of committed and in-flight instructions

unacknowledged sync/dmb barriers

– p. 39

Sample Transition Rule
Propagate write to another thread (a τ transition)
The storage subsystem can propagate a write w (by thread tid)
that it has seen to another thread tid′, if:

the write has not yet been propagated to tid′;

w is coherence-after any write to the same address that
has already been propagated to tid′; and

all barriers that were propagated to tid before w (in
s.events propagated to (tid)) have already been
propagated to tid′.

Action: append w to s.events propagated to (tid′).

Explanation: This rule advances the thread tid′ view of the coherence order
to w, which is needed before tid′ can read from w, and is also needed before
any barrier that has w in its “Group A” can be propagated to tid′.

– p. 40

DEMO

http://www.cl.cam.ac.uk/~pes20/ppcmem/

– p. 41

http://www.cl.cam.ac.uk/~pes20/ppcmem/

...periodic table

– p. 42

	Caution: Not emph {All} of x86
	For example
	What is a Mutex?
	Extending the Tiny Language
	Extending the Semantics
	Extending the Semantics
	Using a Mutex
	Using a Mutex
	Deadlock
	Lock Design
	Implementing Mutexes with x86 Spinlocks
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)
	Spinlock Example (SC)

	Spinlock SC Data Race
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)
	Spinlock Example (x86-TSO)

	Data Race Freedom (DRF)
	Data Race Freedom (DRF)

	What is a data race --- first attempt
	What is a data race --- for x86
	DRF Principle for x86-TSO
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}
	Triangular Races onlySlide *{1}{(Owens)}

	TRF Principle for x86-TSO
	Spinlock Data Race
	Program Correctness
	Other Applications
	Message Passing (MP) Again
	Message Passing (MP)
Again
	Message Passing (MP)
Again

	Enforcing Order with Barriers
	Enforcing Order with Barriers

	Enforcing Order with Dependencies
	Enforcing Order with Dependencies
	Enforcing Order with Dependencies
	Enforcing Order with Dependencies

	Core Semantics
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers
	Iterated Message Passing and Cumulative Barriers

	Independent Reads of Independent Writes
	Storage Subsystem Semantics
	Load Buffering (LB)
	Coherence
	Another Cautionary Tale: PPOAA/PPOCA
	Another Cautionary Tale: PPOAA/PPOCA

	Basic Question
	Operational Model
	Coherence by Fiat
	Model States
	Sample Transition Rule
	DEMO

