
1

Low Power and Embedded
Systems - Workbook 1

Table of Contents
Introduction .. 1

Document conventions ... 2
Supporting material .. 2
Workbooks structure ... 3
What is Needed ... 3

Exercises ... 4
Exercise 1 ... 5
Exercise 2 - Flash an LED ... 8
Exercise 3 .. 11
Finally .. 11

Introduction
The aim of this module is to teach students how to design and write programs for low power embedded
devices that communicate with other computers or devices to solve practical problems. The course will
cover the relevant theoretical knowledge required for writing such applications, and provide practical
experience writing C programs for the Atmel family of microcontrollers. The module will also give
students an appreciation for some of the issues when designing low power embedded systems.

For each of the first 4 weeks of this 8 week course, you will be provided with a workbook like this one.
It contains step by step instructions for you to follow, and links to reference material. Each workbook
contains a number of exercises. Completion of these exercises must be verified by a demonstrator who
will award a 'tick' for each completed workbook. In some instances you may need to provide completed
C code. When this is the case, you are required to provide neatly formatted and commented code, such
that someone else could take your code and modify it without having to decipher cryptic comments or
obscure syntax. For everyone's sanity, use the simplest and most readable way of carrying out the task
- there are no bonus points for clever but unreadable code. There may be occasions (eg for optimised
speed) where you need to use cunning optimisations and tricks. If so comment them really well, or the
next programmer to see the code may well decide to make it more readable and break it. That next
programmer may well be you in 3 years time, of course.

For the final 4 weeks, you will be conducting your own design and build project. There is a list of
project suggestions available: project_suggestions.html [http://www.cl.cam.ac.uk/teaching/1213/P31/
project_suggestions.html] or project_suggestions.pdf If you have any ideas which you think might be
suitable for a project, please discuss them with us at the earliest opportunity, so that we can judge their
feasibility, make recommendations and order any specialist components. You need to have a 1-page
project proposal approved by a demonstrator prior to session 5.

Work your way through the exercises in each workbook. Once you have done this, contact a
demonstrator for 'ticking'. You are expected to have completed each workbook before the start of the
next session. During the sessions, demonstrators are available to assist you if you have any questions,
or if anything is not clear.

An on-line version of this workbook is available at:

workbook1.html [http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html]

You should check this page regularly for announcements and errata. You might find it useful to refer
to the on-line version of this workbook in order to follow any provided web links or to cut and paste
example code.

http://www.cl.cam.ac.uk/teaching/1213/P31/project_suggestions.html
http://www.cl.cam.ac.uk/teaching/1213/P31/project_suggestions.html
http://www.cl.cam.ac.uk/teaching/1213/P31/project_suggestions.html
http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html
http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html

Low Power and Embedded
Systems - Workbook 1

2

Assessment

You need to have obtained 4 'ticks' awarded for completion of each of the 4 workbooks. You will also
need to submit a formal report concerning your project work. The report should be approximately 4,000
words in length, and should be submitted to the Teaching Office on the first teaching day of the Lent
Term. Students are also encouraged to submit their lab books.

Document conventions
Within these worksheets, the following conventions will be used.

Important This style is used for information of particular importance.

 This style is used for program listings.
 Note that you can save yourself considerable amounts of typing by
 referring to the online version of this document and using cut and paste.

This style is used for instructions for you to follow.

When referring to the names of registers in the microcontroller or bit positions within registers a fixed
spaced font will be used.

This workbook was created using Docbook, and transformed into .pdf and html versions.

Supporting material
All the following are available at http://www.cl.cam.ac.uk/teaching/1213/P31/ or sub-directories.

The online version of this workbook at http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html
allows you to follow the links easily.

template.c http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c

A template suggestion for C programs. You may already have your own
style for C programs, in which case that would be a good choice. The
important things is to develop a consistent structure.

When designing with microcontrollers you will find that you re-use
existing code a great deal. Having a structure to your programs will
help to make code re-use easier, and less prone to errors, for example
forgetting to include initialisation code.

ATMEGA644P.pdf Latest: http://www.atmel.com/Images/doc8272.pdf Local copy:
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/atmega644p.pdf

Data sheet for the Atmel ATMEGA644P microcontroller used in
these exercises. You will need to refer to this frequently. Within
these workbooks it will often be referred to as 'the datasheet' The
section numbers referred to in these workbooks refer to revision
8272C of the datasheet dated 06/11. There are a number of
devices with almost identical part numbers. They differ in their power
consumption. The devices you will use may be marked ATMEGA644P
or ATMEGA644PA.

Makefile http://www.cl.cam.ac.uk/teaching/1213/P31/code/
workbook1_Makefile

http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html
http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c
http://www.atmel.com/Images/doc8272.pdf
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/atmega644p.pdf
http://www.cl.cam.ac.uk/teaching/1213/P31/code/workbook1_Makefile
http://www.cl.cam.ac.uk/teaching/1213/P31/code/workbook1_Makefile

Low Power and Embedded
Systems - Workbook 1

3

A Makefile template used in Exercise 1.

avr-libc documentation http://www.nongnu.org/avr-libc/

Documentation for libraries available on the PCs for the Atmel range
of microcontrollers.

breadboard_program.pdf http://www.cl.cam.ac.uk/teaching/1213/P31/docs/
breadboard_program.pdf

A circuit diagram for connecting a programming header to the
microcontroller.

Programming header http://www.cl.cam.ac.uk/teaching/1213/P31/docs/
programming_header.jpg

Photograph showing the connections for in-circuit programming of the
microcontroller.

AVR-GCC tutorial http://winavr.scienceprog.com/avr-gcc-tutorial/

Tutorial for AVR-GCC.

Workbooks structure
Workbook 1 will cover Microcontroller Clock sources, and very basic I/O.

Workbook 2 will cover basic Serial communication, Serial communication using interrupts, and the use
of the Analogue to Digital converter.

Workbook 3 will cover the use of timers in the microcontroller, and adding an LCD display for more
readable output.

Workbook 4 will cover interrupts generated from transitions on inputs, and use these to create a precision
interval display. It will also cover the sleep modes for the microcontroller.

What is Needed

Hardware

• A microcontroller Integrated Circuit (IC) - In these workbooks you will be using the ATMEGA644P
microcontroller made by Atmel. There are a large number of members of this family of microcontrollers
each with different capabilities. For the project part of the course, other devices in the family may be
a better fit to the requirements.

• A power supply (PSU). The early exercises need a PSU capable of delivering 5 V at 100mA. Note
that some members of the microcontroller family will work at reduced clock speeds at supplies down
to 1.8 V. In these first 4 weeks you will be using PSUs with a current limit. When the output is switched
on, the display shows the current being drawn. With the output off, the displays the maximum current
which can be drawn before the PSU cuts the supply voltage. If the current is high (compare with other
people) then there is invariably something wrong which you should investigate, or ask a demonstrator
for help.

• A programmer for the microcontroller - these worksheets are written assuming the use of a USB based
device from tuxgraphics.org

• A prototyping board so we can develop the hardware, sensors and interface circuits.

Software Toolchain

• avr-gcc - a C cross compiler.

http://www.nongnu.org/avr-libc/
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/breadboard_program.pdf
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/breadboard_program.pdf
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/programming_header.jpg
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/programming_header.jpg
http://winavr.scienceprog.com/avr-gcc-tutorial/

Low Power and Embedded
Systems - Workbook 1

4

An alternative would be to use an AVR cross assembler, enabling us to write assembly code directly.
While an assembler might produce slightly faster and more compact code, C should give reasonable
results whilst being somewhat easier to program. We will use the gcc cross-compiler. The cross prefix
refers to the fact that we run it on one type of computer (Intel x86 architecture) but create code to run
on a different architecture (the Atmel device).

• avr-libc - libraries for the Atmel AVR family of microcontrollers we are using. Documentation is
available at http://www.nongnu.org/avr-libc/.

• binutils-avr - compiler tools such as 'make'.

• avrdude - software to control the programmer.

Number notations

• Decimal numbers have no prefix and are shown as e.g., 45

• Hexadecimal values are shown in the form 0xDF

• In these worksheets we will not use octal. It is perfectly valid, but is likely to cause errors.

• The microcontrollers don't have floating point support. Floating point number will be rounded without
warning.

C Compiler Workflow

In general, each of the following steps need to be performed to create and run software on the
microcontroller.

• The C code is created in a file ending with the extension .c

• A program called make is used together with a configuration Makefile. make uses the timestamp
on files and the contents of the Makefile to decide which commands need to be run. make knows
nothing about the compile process - it simply compares timestamps on input and output files, and
runs a command if the input is newer than the output. The resulting output file may be an input to
another line in the Makefile, and so the process may repeat multiple times. If there are no errors,
then eventually all output files will be up to date. The input files are more generally described as
source files and the output files are described as object files.

During the processing by make, the .c files (there may be several) will be compiled, and linked with
library object files to form object files, ending in .o

These .o files are converted in turn by make to a suitable format for the programming hardware,
usually with a .hex extension.

• The command make program invokes a program called avrdude which transfers the .hex file to the
microcontroller.

If the code transfers correctly, the microcontroller restarts and executes the code immediately, exactly
as it would from power on.

Exercises
This week there are two exercises. They are intended to be straightforward, but they will provide
a thorough test of the toolchain being used, and give you a first taste of programming these
microcontrollers in C. These examples are also useful later on since they will enable you to verify the
hardware and software toolchain when more complex programs that you have developed fail to work
as expected.

http://www.nongnu.org/avr-libc/

Low Power and Embedded
Systems - Workbook 1

5

Exercise 1 Set up the clock to the microcontroller, and verify its function using an oscilloscope.
Exercise 2 Flash a light emitting diode (LED) once per second.

Exercise 1
Setting-up the clock for the microcontroller.

The ATMEGA644P device can use one of several clock sources, including one generated internally.
The internal clock isn't very precise, but for many applications it is sufficient. An option exists to output
the clock to a pin, where its function can be verified using an oscilloscope.

In this exercise you will determine suitable values for hfuse and lfuse such that the devices use the
clock generated within the device, and also output it to a pin where you will be able to verify that it is
working as expected. Note that the term 'fuse' is left over from earlier programmable devices which really
did have fuses which, once blown, were fixed in that state. In newer devices, the term refers to settings
made in flash memory which can be reprogrammed multiple times by use of the programming hardware,
but importantly, cannot be changed by the program running on the microntroller itself. The factory default
for hfuse is correct for what we require here, but you will need to make one change to lfuse.

For this exercise, refer to the datasheet for the device at http://www.cl.cam.ac.uk/teaching/1213/
P31/docs/atmega644p.pdf, in particular sections 1 (pin configurations), 8.2 (System clock and
clock options), and 26.2 (Fuse bits) and work out the required hexadecimal values for lfuse and
hfuse values to make the device:

• use the Calibrated Internal RC Oscillator.

• divide the clock by 8.

• output the clock to a pin.

CHECK the values for lfuse and hfuse with a demonstrator. They will be used later.

Creating a directory structure to hold your work

Many of the exercises in these worksheets will build on example code and on code created in previous
exercises. Creating a clear directory structure will help both you and the demonstrators. For each
exercise, make a COPY of relevant files from previous exercises.

In some instances, example code or partially completed code will be provided for you.

Log in to the computer, and create a directory structure. Commands are listed immediately below.
Use cut and paste if you can.

 cd ~
 mkdir -p embedded_systems/workbook1/exercise1
 mkdir -p embedded_systems/workbook1/exercise2
 mkdir -p embedded_systems/workbook1/exercise3
 mkdir -p embedded_systems/workbook2/exercise1
 mkdir -p embedded_systems/workbook2/exercise2
 mkdir -p embedded_systems/workbook2/exercise3
 mkdir -p embedded_systems/workbook3/exercise1
 mkdir -p embedded_systems/workbook3/exercise2
 mkdir -p embedded_systems/workbook4/exercise1
 mkdir -p embedded_systems/workbook4/exercise2
 cd embedded_systems/workbook1/exercise1

http://www.cl.cam.ac.uk/teaching/1213/P31/docs/atmega644p.pdf
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/atmega644p.pdf

Low Power and Embedded
Systems - Workbook 1

6

The Programmer

Plug the programmer in to your PC, and wait a few seconds for the PC to recognise that a new
device has been connected.

Type dmesg. One of the last few lines should be similar to:

[2323862.498398] usb 5-1: FTDI USB Serial Device converter now attached
to ttyUSB0

The key item here is the reference to ttyUSB0. This programmer is now available on /dev/
ttyUSB0. Depending on any other USB devices connected to the PC, the programmer may be
connected to /dev/ttyUSB1 or a higher number.

The Makefile

cd to ~/embedded_systems/workboook1/exercise1

Create a file called Makefile using your favourite editor to read as below.

• Gedit is available, and has C syntax highlighting turned on by default. Line numbering can be
switched on under Edit->Preferences. You might also want to turn on bracket matching, and
select a colour scheme which works on the LCD

• Emacs is available and also has syntax highlighting. Switch on bracket matching in the Options
menu.

• Nano is installed, start it from a command promp with nano. To get C syntax highlighting, type
cat /usr/share/nano/c.nanorc >> ~/.nanorc

The name must be exactly as shown, i.e., Upper case M, the rest in lower case.

Edit the Makefile so that it contains the text shown on the next page. To ease this process use cut
and paste from the online version of this workbook at http://www.cl.cam.ac.uk/teaching/1213/P31/
workbook1.html, or right click and choose 'Save as' from http://www.cl.cam.ac.uk/teaching/1213/
P31/code/workbook1_Makefile.

Note: Makefiles use tabs not spaces for the whitespace preceding commands. Check your
Makefile, as they may get changed to spaces during the copy process.

The contents of the Makefile will be explained in more detail later on. For this exercise only the
last two lines matter, but exercise 2 will use the rest of the Makefile.

http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html
http://www.cl.cam.ac.uk/teaching/1213/P31/workbook1.html
http://www.cl.cam.ac.uk/teaching/1213/P31/code/workbook1_Makefile
http://www.cl.cam.ac.uk/teaching/1213/P31/code/workbook1_Makefile

Low Power and Embedded
Systems - Workbook 1

7

CPPFLAGS=-I. -I../lib
MCU=atmega644p
VPATH=../lib
all: exercise1.hex

exercise1.elf: exercise1.o

%.o: %.c
 avr-gcc ${CPPFLAGS} -Os -mmcu=${MCU} -o $@ -c $^

%.elf: %.o
 avr-gcc -Os -mmcu=${MCU} -o $@ $^

%.hex: %.elf
 avr-objcopy -j .text -j .data -O ihex $^ $@

%.lst: %.elf
 avr-objdump -h -S $^ > $@

clean:
 rm -f *.o *.elf *.hex *.lst

program: exercise1.hex
 avrdude -p m644p -P /dev/ttyUSB0 -c avrusb500 -e -U flash:w:$^

fuses:
 avrdude -p m644p -P /dev/ttyUSB0 -c avrusb500 -e -U hfuse:w:0x99:m
 avrdude -p m644p -P /dev/ttyUSB0 -c avrusb500 -e -U lfuse:w:0x62:m

The Makefile you have just created contains the default settings for the hfuse 0x99 and lfuse 0x62.

Edit the hfuse and lfuse values to those you worked out previously and checked earlier with a
demonstrator. In these workbooks we don't need to change the extended fuse setting.

You might also need to edit the references to /dev/ttyUSB0 to match the those of actual device.
See the previous section 'The Programmer'.

Here is a brief explanation of the line you have just edited (note: this is only for information).

avrdude The linux program used to program the device.

-p m644p Tells avrdude the device type being programmed - the device signature is
checked before programming.

-P /dev/ttyUSB0 Tells avrdude where the programmer is attached.

-c avrusb500 Tells avrdude the type of programmer being used.

-e Erase the device before programming.

-U hfuse:w:0x99:m Perform a memory operation.

In this case hfuse:write:value-to-write:immediate (that is the value to write is
literally the value 0x99).

Low Power and Embedded
Systems - Workbook 1

8

Connections

The next stage is to fit the microcontroller into the prototyping board, and wire it up to a power supply
and a programmer. These devices can use In Circuit Programming - i.e., the device does not need to
be removed from the board in order to be programmed. Note that Pin 1 of the device is marked with a
dot, and the pins are numbered counter-clockwise when looking from above.

Refer to the circuit diagram http://www.cl.cam.ac.uk/teaching/1213/P31/docs/breadboard_program.pdf.
Connect the device up as shown in the diagram. There is a photo showing one possible layout here:
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/programming_header.jpg

Important The 10uF tantalum capacitor is polarised. It MUST be fitted the right way round.
Tantalum capacitors rely on a thin electrolytic film to achieve their high capacitance per unit volume,
and this film depends on the electric field generated by the applied voltage. Connecting an electrolytic
capacitor incorrectly can lead to the device exploding.

Apply 5 Volts from the PSU to the device.

the command to program the device fuses is:

make fuses

The programming software carries out a read (to get the device type), a write (to write the fuses)
then a read (to verify the fuses) for each of the fuses.

If all went well, then you should be able to verify using an oscilloscope that there is a 1MHz square wave
on PORT PB1 which is pin 2 of the device.

If not, the following list gives some common problems

1. No power to the microcontroller. Note that the power consumption may be too small to low on the
power supply current meter.

2. The microcontroller is in the board the wrong way round.

3. Not looking at the correct output pin.

4. The oscilloscope probe ground clip is not connected to the board ground (0V).

5. Wrong values for hfuse and lfuse - if you get the value wrong and then can't program the device,
it may be that you have set it to use an external clock, or have disabled programming. Either way
you'll need a new ATMEGA644P.

Exercise 2 - Flash an LED
So far you may not feel that much progress has been made, but now we know that:

1. The Atmel device is receiving power and using an internal clock.

2. The in-circuit programming is working.

3. The software toolchain and at least the last 2 lines of the Makefile are correct.

In this exercise, you will attach an LED to an output, and write some C code to flash the LED.

To simplify this task, a template is provided for you, but some terms need to be defined first.

http://www.cl.cam.ac.uk/teaching/1213/P31/docs/breadboard_program.pdf
http://www.cl.cam.ac.uk/teaching/1213/P31/docs/programming_header.jpg

Low Power and Embedded
Systems - Workbook 1

9

Input / Output Notation

For a detailed description, refer to section 13 of the datasheet for the device. The following is a brief
summary:

Each 8 bit IO port is controlled by three 8 bit registers: DDR (Data Direction Register), PORT (data
output register), PIN (data input register)

Different devices have different numbers of ports referred to as PORTA, PORTB, PORTC etc, and
controlled by DDRA, DDRB, DDRC etc

DDR

The 8 bit Data Direction Register, DDR, contains a 1 in each position where an output is required, for
example to set the top bit of PORTB (PB7) as an output and the rest as inputs:

DDRB = 0x80 ;

PORT

Assigning an 8 bit value to a PORT will write a value to the Data Output register. If the corresponding
pin is set to be an output, then the value in the Data Output register will control the voltage on the output
pin. If the corresponding pin is set to be an input, a 1 in the Data Output register will enable a pull up
resistor on the pin.

To change fewer than 8 bits at once, use the bitwise AND and bitwise OR functions in C (see later in
this section).

For example to set the top 5 bits to a low state, the lower 3 bits to a high state

PORTB = 0x07 ;

PIN

PIN is used when reading from the data input register. It shows the value from the pin on the device
whether or not that pin is defined as an input or an output. For example, to read the values on the 8
pins PB7..PB0:

input_variable = PINB ;

Hardware

For this exercise, LEDs with suitable resistors built in for 5V operation are provided for you (the green
and red ones).

For these devices, the cathode, is the shorter lead. Connect it to Ground.

Connect the longer lead on the LED to PB0 (pin 1 on the ATMEGA644P).

Software

In general it is a good idea to have structure in your programs. For microcontrollers, it makes a
lot of sense to have building blocks which you can cut and paste between your different programs.
Microcontrollers don't have a vast amount of code space so you can't simply include all possible
functions just in case you need them. A suitable template is provided: template.c [http://
www.cl.cam.ac.uk/teaching/1213/P31/code/template.c]

http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c
http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c
http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c

Low Power and Embedded
Systems - Workbook 1

10

We have just seen the method used to assign ports as inputs and as outputs, and how to read from
and write to them.

When using microcontrollers it is often a requirement to set (or clear) one bit of a port at a time, rather
than writing a new value to the whole port. The preferred way to set a bit is to use the |= operator. For
example bit 5 of PORTB:

 PORTB |= (1<<PB5);

and to clear that bit

 PORTB &= ~(1<<PB5);

To explain this in more detail: In the library header <avr/io.h> PB5 is defined as the value 5. So (1<<PB5)
is 00000001 shifted left 5 places, to give 00100000 binary or 0x20 when expressed in hexadecimal.

 PORTB |= 0x20

is equivalent to

 PORTB = PORTB | 0x20

and will set bit 5, leaving all others untouched.

We actually only need the brackets round (1<<PB5) in the case ~(1<<PB5) in order to define the operator
precedence, but it is good practice to put the brackets in anyway as it is easy to miss when editing code.

Copy of the template from template.c [http://www.cl.cam.ac.uk/teaching/1213/
P31/code/template.c] and put it in the directory structure you created earlier as exercise2.c
If you need to rename the file after copying it, then the linux mv command is the one you need.

In the header of your program, add the following

#define F_CPU 1E6 // 1MHz
#include <util/delay_basic.h>
#include <util/delay.h>

You now have access to the library functions _delay_ms(J) and _delay_us(K) where you subsitute
double values for J and K, which must be known at compile time. You can't use variables for J and
K; if you try you will just get a very small or a very large delay. See the documentation at avr-libc
[http://www.nongnu.org/avr-libc/user-manual/modules.html] for more details.

One last step.

In order to loop forever (rare in most C programs, but common when using microcontrollers)

 while (1) {
 // code in here
 }

you now have all the parts you need to write code to flash the LED once per second.

http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c
http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c
http://www.cl.cam.ac.uk/teaching/1213/P31/code/template.c
http://www.nongnu.org/avr-libc/user-manual/modules.html
http://www.nongnu.org/avr-libc/user-manual/modules.html

Low Power and Embedded
Systems - Workbook 1

11

Modify the port_direction_inti() function to assign PB0 as an output

Write a chunk of C code in the main() function to flash an LED once per second. In pseudo code
it would be:

 while {
 Set a suitable bit in the PORT register to output a 1 to the LED
 wait(0.5 second)
 clear a suitable bit in the PORT register to output a 0 to the LED
 wait(0.5 second)
 }

assuming you called this exercise2.c, modify the Makefile to change exercise1 to exercise2 (4
places)

Connect the programming header and issue the following commands:

 make

 make program

You should be rewarded with a flashing LED. If it isn't flashing but you think your code is correct, you
can look at pin 1 with an oscilloscope or multimeter to check.

Make sure you have shown your working code for each of the exercises to a demonstrator and received
your 'tick'.

Exercise 3
Before the class next week, modify exercise 2 to use 2 LEDs flashing alternately. Fit a red and a green
LED to PORTB. The green LEDs aren't as bright, so turn the green LED on for 700mS, off for 300mS,
but leave the red LED on/off times at 500mS. PB1 is being used for the clock output, so add the second
LED to a different pin on PORTB.

Finally
Make sure you are completely familiar with the IO for the device, that is the correct way to set the DDR
and to read and write to ports. The next workbook moves on to other topics and assumes a knowledge
of this one.

Subsequent workbooks will not be as detailed as this one, and cover a lot of material quite quickly. This
is particularly true for next week's workbook which has three exercises, less so for week three which has
two exercises. To make best use of the time when demonstrators are available, try to read through the
next workbook and the relevant parts of the datasheet before the start of the session. If there are parts
which are not clear, it will help you if you write a summary in the form of questions for the demonstrators
while it is still fresh in your mind.

12

	Low Power and Embedded Systems - Workbook 1
	Table of Contents
	Introduction
	Assessment
	Document conventions
	Supporting material
	Workbooks structure
	What is Needed
	Hardware
	Software Toolchain
	Number notations
	C Compiler Workflow

	Exercises
	Exercise 1
	Creating a directory structure to hold your work
	The Programmer
	The Makefile
	Connections

	Exercise 2 - Flash an LED
	Input / Output Notation
	DDR
	PORT
	PIN

	Hardware
	Software
	

	Exercise 3
	Finally

