
Optimising Compilers 2012–2013

Exercise Sheet 4

The purpose of this exercise sheet is to practise inference-based analysis, effect systems, points-to
analysis, decompilation and instruction scheduling.

1 Warm Up

• Explain what is meant by the “phase order problem” in compilation.

• Discuss, with an example, how optimisation phases can conflict and adversely affect each
other?

• How can SSA form be used to help produce better results in both compilation and de-
compilation?

2 Inference-based analysis

In this exercise sheet, we review inference-based analysis (Lecture 12) and, more specifically,
effect systems (Lecture 13). An inference-based analysis is specified using judgements of the
following form:

Γ ` e : φ

In this judgement, e is an expression, Γ specifies the assumptions about the free-variable
context and φ is a program property (that tells us something useful about the expression e).

(a) For more information about inference-based analysis, review the slides from Lecture 12
and read Section 16 of the course notes.

2.1 Matrix processing

In this example, we look at a matrix processing language. Our language supports the following
basic operations:

e ::= A | e + e | e− e | e× e | eT

The construct A accesses a matrix-valued variable; operators + and − represent point-wise
plus and minus on matrices; × is used for matrix multiplication and eT calculates a transposed
matrix.

We want to use inference-based analysis to check that programmers do not attempt to apply
operations on matrices of incompatible sizes. For example, if A is a matrix of size 4× 2 and B
is of a size 2 × 3 then the expression A + B is invalid (because + and − requires the matrices

1

to be of the same size), but A×B is a valid expression and yields a matrix of size 4× 3. More
formally, the following judgement holds:

A : 4× 2, B : 2× 3 ` A×B : 4× 3

The context Γ consists of matrix variables with their respective sizes and the property φ
that we obtain from our analysis is the size of the matrix produced by an expression of our
language.

A rule that describes variable access looks as follows:

(var)
Γ, A : m× n ` A : m× n

(b) Write inference rules for the remaining operations of the language (binary operators
+, −, × and unary operation AT)

(c) Aside from making sure that calculation with matrices does not apply some operation
on matrices of incompatible sizes, it can also guide optimisations in the compiler or
interpreter. Can you suggest some optimisation that could be done using the matrix
size information? Hint: Matrix multiplication is associative, but . . .

3 Type and effect systems

In the previous example, we did not need to distinguish types of expressions, because everything
was a matrix. Moreover, the language did not have any side-effects such as I/O, mutable state
or communication.

A particular case of inference-based analysis that provides information about types and
side-effects of expressions is called type and effect system.

(a) For more information about type and effect systems, review the slides from Lecture 13
and read Section 17 of the course notes.

3.1 Tracking side-effects

Type and effect systems can be used to track side-effects of a computation including com-
munication (channels from which the computation reads and to which it writes) and memory
operations (whether it reads or writes or what global stores it uses).

(b) Answer the questions in past paper 2008 Paper 9 Question 16, which discusses the use
of type and effect systems for communication via channels.

(c) Answer the questions in past paper 2002 Paper 8 Question 7, which considers tracking
of reads and writes to ML-style mutable references.

The type and effect system in (f) annotates judgements and function types with effects
F ⊆ {A,R, W}. This tells us whether an expression allocates, reads or writes any reference
cells. In larger programs, we would like to be more precise – in particular what reference cells
does the computation access.

As reference cells are allocated and used dynamically, tracking the exact reference cells
accessed would be difficult. However, we can use a higher-level abstraction called regions. The
idea is that the user can create memory regions and every reference cell is allocated in a specific

2

region. In the type and effect system, we do not track operations on individual reference cells,
but instead, operations on regions.

We assume that the region names, written as ρ1, ρ2, . . . are already defined. To track where
a reference is allocated, we modify the language as follows:

e ::= . . . | refρ e
τ ::= . . . | intrefρ

We use ρ as a meta-variable ranging over region names. The expression that constructs a
reference cell is annotated with a region that is used and this information is attached to the
intref type. The effects that we want to track are now annotated with the region in which they
occur, so F ⊆

⋃
ρ{Aρ, Rρ,Wρ}.

Assuming x is a variable of type int, the following (rather useless) program allocates a
reference cell initialised to the value of x in a region ρ1 and then immediately reads the value
and returns it:

(λr → !r) (refρ1 x)

(d) Describe what changes do we need to make to the type and effect system from (f) in
order to track more detailed effect information about memory regions.

3.2 Tracking execution environments

[This is quite a long example, but gives additional insight into non-trivial uses of effect systems.]
Suppose that we have a new and fancy call-by-value distributed programming language called
WebLambda. A program in WebLambda can be compiled to machine code (and executed on the
server-side) or to JavaScript (and executed in the web browser). However, some expressions in
WebLambda cannot be compiled to JavaScript, because they are not supported in JavaScript.
Similarly, some expressions cannot be compiled to native code (perhaps, because they use user-
interface functions available only in JavaScript).

The WebLambda language is, of course, based on lambda calculus and has the following
syntax. For now, the language does not support any communication between client-side and
server-side. The only goal is to write code once and then compile it for both server-side and
client-side without code duplication:

e ::= x | e e | λx.e | let x = e1 in e2 | if e then e else e

The following example shows two functions. A function twice that multiplies a number by
2 and can be compiled to both native code and JavaScript. The functions mainClient and
mainServer use twice to run a calculation and then show the result using either window.alert
(available in web browser) or console.write (only in native code):

let twice = fun n -> n * 2

let mainClient = fun () ->
window.alert (twice 21)

let showServer = fun () ->
console.write (twice 21)

3

To make programming in WebLambda safer, we want to develop type and effect system that will
give us a type of expression together with a set of execution environments specifying where it
can be executed. The syntax of types is the following:

τ ::= α | τ1
E−→ τ2

The type α stands for primitive types of our language (such as integers, unit and other). The
set of all possible execution environments that our language supports is E = {client, server}. In
the function type τ1

E−→ τ2, the annotation E specifies a set of execution environments where the
function can be executed and it is a subset of all possible environments E ⊆ E . In the previous
example, the two primitive functions have types:

window.alert : int
{client}−−−−→ int

console.write : int
{server}−−−−−→ int

As we only have integers, the functions display a number and return 0. The typing judgements
have the following form:

Γ ` e : τ, E

The judgement means that an expression e has a type τ and can be executed in execution
environments E (where E ⊆ E). The typing judgements that describe the types of variable
access and lambda abstraction look as follows:

(var)
Γ, x : τ ` x : τ, E

(fun)
Γ, x : τ1 ` e : τ2, E

Γ ` λx.e : τ1
E−→ τ2, E

The (var) rule specifies that an expression which accesses a variable does not have any additional
requirements on the execution environments and thus can be execute in all environments that
our language supports.

The (fun) rule specifies that, if a body of the function can be executed in environments E,
then the function is annotated with these environments (we should be only able to call it in one
of the supported environments). At the same time, creating a lambda function is only allowed
in environments E (as the language does not support any communication between sides, we can
only create function values in environments where we can also run them).

(e) Write application and if rules for the type system of WebLambda. Assuming we have
expression e1 of type τ1

E1−→ τ2 and effect E2 and an argument e2 of type τ1 and effect
E2, in what execution environment can we evaluate e1 e2? (For if, assume that the
condition can be an integer)

(f) Recall the discussion about effect sub-typing from Lecture 13. If we have functions

f1 and f2 of types τ1
E−→ τ2 and τ1

E′
−→ τ2, the expression if e then f1 else f2 only

type-checks if the effects E and E′ are equal. This is limiting, so many systems provide
subtyping that allows us to view a function with fewer effects as a function that has more
effects. This is safe for effect systems, because the system over-approximates the actual
effects that will happen at run time. Define the sub-typing rule for the WebLambda
language.

(g) In the previous example, it would be useful if we could combine functions window.alert
with console.write to get a single function that can be used on both client-side and

4

server-side. When executed, the combined function will use one of the two provided
functions, depending on the current environment.

(h) Extend the language with an operation ⊕ that allows us to write window.alert ⊕
console.write and give a typing rule for this operation.

(i) Give types and effects for the following programs, discussing the interesting aspects of
the inference (assume b is a global variable of type int).

(1) λx. console.write x

(2) (if b then console.write else window.alert) b

(3) (if b then console.write else window.alert) ⊕ (λx.x)

4 Points-to and alias analysis

Consider the program:

int c,d,e,*p,*q;
p = &c;
*p = 3;
p = &d;
q = &e;

Determine both informally, and using Andersen’s method, ‘the’ points-to relation. Which vari-
ables are in its domain and range? Does it help to have a separate points-to relation for each
program point? If so, can you give dataflow equations (as earlier in the course) relating points-to
at one program point with that of its neighbours? Is it forward or backwards?

Now consider the (untyped) program, where (*) represents a boolean expression not con-
taining p, q or r, s whose value cannot be determined by the program analyser:

q = &r;
while (*)
{ p = q;

if (*) { p = *p; print p; }
else { s = q; }
r = &s;

}
print 42;

Calculate the overall points-to relation by Andersen’s method, and also determine (e.g. by your
dataflow method above) the points-to relation at each program point.

Finally, it turns out that calculating points-to sets for each program point can produce very
large amounts of data (that’s the reason for Andersen’s method being popular). However, not
all the points-to pairs are useful. Can live variable analysis be used to remove some of the
points-to pairs after calculating them.

Much harder: is there a phase-order problem between liveness and points-to analyses for
this sort of example?

Can one use points-to information to determine whether a location is aliased (has two or
most pointers to it)? If so, does your alias information tell you there must be an alias or there
may be an alias?

5

5 Decompilation

In this question we are going to consider a simple imperative language called farboo with the
following syntax:

statements ::= statement statements | statement

statement ::= for var = N to N do statements end

| if expr then statements end

| if expr then statements else statements end

| declaration

declaration ::= var = expr

expr ::= val operator expr | val

operator ::= + | − | ∗ | \
val ::= N | var

where N ranges over integer constants and var over variables. The if statements test whether
the supplied expression is non-zero as in C.

1. Consider the following 3-address code generated by compiling three programs in farboo.
Decompile the assembly code back into farboo giving reasons for any decisions you make.
Hint: Try decomposing the code into basic blocks first.

(a) MOV t01, x

MOV t02, y

ADD t03, t01, t02

MOV t04, #0

CMPEQ t04,t03, label1

B label2

label1: MOV t01, 0

label2: MOV res1, t01

(b) MOV t01, #1

MOV t02, #1

MOV t03, #10

label1: CMPEQ t02, t03, label2

MUL t01, t01, #2

ADD t02, t02, #1

B label1

label2: MOV res1, t01

(c) MOV t01, x

MOV t02, y

MUL t03, t01, t01

MUL t04, t02, t02

ADD t05, t03, t04

SUB t05, t05, #1

MOV t06, #0

CMPNE t05, t06, label1

MOV t07, #1

B label2

label1:

ADD t05, t05, #1

MOV t07, t05

B label2

label2: MOV res1, t07

3. Now that you have seen some compiled code for farboo, define a decompilation function
for farboo that takes 3-address code and returns farboo code. You may assume that
the patterns of 3-address code shown above are typical for compiled farboo code.

Hints:

• What are the general 3-address code if and for structures?

• See Lecture 16 for decompilation.

• A simple way to describe the decompilation function may be using pattern matches on
sections/structures of 3-address code with variables that are ”filled in” by the pattern
match. E.g. [|MOVx, y|] = x = y or [|MOV a, x; MOV b, y; ADD c, a, b|] = c = x + y.

• You may want pattern matches to be able to group pieces of code into a block assigned
to a variable and then to call your decompile function on this block.

6

6 Instruction Scheduling

Please complete question 2002 Paper 9 Question 7.
Past exam questions can be found at:

http://www.cl.cam.ac.uk/teaching/exams/pastpapers/t-OptimisingCompilers.html

7

