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The Course

The OOP Course

 Last term you studied functional programming (ML)
 This term you are looking at imperative programming 

(Java primarily). 
 You already have a few weeks of Java experience
 This course is hopefully going to let you separate 

the fundamental software design principles from 
Java's quirks and specifics

 Four Parts
 From Functional to Imperative
 Object-Oriented Concepts
 The Java Platform
 Design Patterns and OOP design examples

Last term you learnt to program using the functional
programming language ML. As we discussed in the
Computer Fundamentals course, there are many rea-
sons we started with this, chief among them being
that everything is a well-formed function, by which we
mean that the output is dependent solely on the inputs
(arguments). This generally makes understanding eas-
ier. In fact, if you try any other functional language
you’ll probably discover that it’s very similar to ML
in many respects and translation is very easy. This
is a consequence of functional languages having very
carefully defined features and rules.

However, if you have any experience of programming
outside this course, you’re probably aware that func-
tional programming remains a niche choice. The dom-
inant paradigm is imperative programming, Unlike
their functional equivalents, imperative languages can
look quite different to each other, although as time
goes on there does seem to be more uniformity aris-
ing. Imperative programming is much more flexible1

and, crucially, not all imperative languages support all
of the same language concepts in the same way. So, if
you just learn one language (e.g. Java) you’ll proba-
bly struggle to separate the underlying programming
concepts from the Java-specific quirks. Consequently
jumping ship to C++ will be a bit tricky...

And that’s what we saw when the Java practicals first
came into being: students learnt to program in Java,
not how to use the Object Oriented Programming
(OOP) concepts. This course was introduced to try

1some would say it gives you more rope to hang yourself with!

to address this.

The ’examinable’ OOP language for IA Computer Sci-
ence is Java, and you won’t be expected to program
in anything else. However, Java doesn’t support ev-
erything we’ll be looking at so other languages will be
used to demonstrate certain features. For those of you
continuing in the Natural Sciences Tripos next year,
you’ll probably need to get to grips with C++, so I
will make that a nominal second language here (albeit
not examinable). We may also find time to try out
Python and some other popular languages.

Java Practicals

 This course is meant to complement your 
practicals in Java
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both: deliberately*!

* Some material may be repeated unintentionally. If so I will claim it was deliberate. 

Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP 

language (Java, C++, Python)
 Java: How to Program by Deitel & Deitel (also C++)
 Thinking in Java by Eckels
 Java in a Nutshell (O' Reilly)  if you already know another OOP 

language
 Java specification book: http://java.sun.com/docs/books/jls/
 Lots of good resources on the web

 Design Patterns
 Design Patterns by Gamma et al.
 Lots of good resources on the web

2



Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/1112/OOProg/

There is no shortage of books and websites describing
the basics of OOP. The concepts themselves are quite
abstract, but most texts will use a specific language to
demonstrate them. The books I’ve given favour Java
but you shouldn’t see that as a dis-recommendation
for other books. In terms of websites, SUN produce a
series of tutorials for Java, which cover OOP: http:
//java.sun.com/docs/books/tutorial/

but you’ll find lots of other good resources if you
search. And don’t forget your practical workbooks,
which do not assume anything from these lectures (al-
though the deeper knowledge gained from this course
may help you with your ticks!)
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Lecture 1

From ML to Java

There are many differences between ML and Java.
Here we highlight some key points that might help
you with the transition.

1.1 Functional → Imperative

Moving from ML to Java is fundamentally a shift
from functional programming to imperative program-
ming. We met the concepts in Computer Fundamen-
tals, where we saw that functional languages are a sub-
class of what is called declarative languages. As a brief
recap we left it at:

Declarative languages specify what should be done
but not necessarily how it should be done. You
know an ML compiler might use your function
definition as a guideline to do something different
but equivalent;

Imperative languages specify exactly how something
should be done. You can consider an imperative
compiler to act very robotically—it does exactly
what you tell it to and you can easily map your
code to what goes on at a machine code level;

Although it’s useful to paint languages with these
broad strokes, the truth is today’s high-level languages
should be viewed more as a collection of features. ML
is a good example: it is certainly viewed as a func-
tional language but it also supports all sorts of proce-
dural programming constructs as you saw at the end of
last term. Similarly, the compilers for most imperative
languages support optimisations where they analyse
small chunks of code and implement something differ-
ent at machine-level to increase performance—this is
of course a trait of declarative programming1.

1Note that we need a way to switch off optimisations because
they don’t always work due to the presence of side effects in
functions. Tracking down an error in an optimisation is painful:
the ‘bug’ isn’t in the code..!

1.2 Run as you go → Explicit
Start Points

Explicit Start Points

Java: Java:   public static void main(String args[])

C/C++: C/C++:   int main(int argc, char **argv)

python:  def main():
                    # main code here
 

    if __name__ == "__main__":
        main()

When ML reads in a source file, it interprets it as it
goes. A call to execute a function causes the execution
to occur at the moment it’s read (how could you check
that it doesn’t compile the whole file first?).

If we are to compile our programs it is more normal
to specify a start-of-execution function. This is little
more than a function with a special name that the
compiler watches out for. It is normal for this function
to provide some way to get at the arguments supplied
to the program when it is run. Most languages copy
C/C++ in calling the function main(...), and this
includes Java which uses a signature as follows:2

public static void main(String[] args)

2See workbook 1
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1.3 Type Inference → Explicit
Types

Types and Variables

 We write code like:

 The high-level language has a series of primitive 
(built-in) types that we use to signify what’s in the 
memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many 

languages.  It’s usually a 32-bit signed integer 

 A variable is a name used in the code to refer to a 
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

By this stage you’ve no doubt had a few headaches
dealing with types in ML. When you wrote ML func-
tions you tried hard to avoid specifying the types: oc-
casionally you had to but you knew that if you could
keep it general then you could use polymorphism to
avoid writing separate functions for integers, reals, etc.
This is a nice feature, although I acknowledge that
ML’s error messages could be a little less... cryptic.

There are imperative languages where you can still
avoid specifying the type and rely on polymorphism
(Python or Javascript for example) but they are more
the exception than the norm. Java is characterised by:

• every value has a type assigned on declaration;
and

• every function specifies the type of its output (its
‘return type’) and the types of its arguments.

E.g. int x declares x to be an integer;
float get(int y) declares a function get that takes
an integer and returns a floating point value.3

3Later in the course we meet Generics, where the type is left
more open. However, there is a type assigned to everything,
even if it’s just a placeholder.

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types 

that we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 bits as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

See Workbook 1

These are the primitive types in Java4. For any
C/C++ programmers out there: yes, Java looks a
lot like the C syntax. But watch out for the obvious
gotcha — a char in C is a byte (an ASCII character),
whilst in Java it is two bytes (a Unicode character).
If you have an 8-bit number in Java you may want to
use a byte, but you also need to be aware that a byte
is signed..!

You do lots more work with number representation
and primitives in your Java practical course. You do a
lot more on floats and doubles in your Floating Point
course.

1.4 Lists → Arrays

Arrays

byte[] arraydemo = new byte[6];
byte   arraydemo2[] = new byte[6];
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ML features tuples and lists as first class citizens of the
language5. Most imperative languages feature arrays
as a fundamental type. An array is a set of values
stored sequentially in a single chunk of memory and
maps directly to ML’s Array, with the same properties:

4See workbook 1
5See workbook 3
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• O(1) element access;

• efficient storage—the next element is implicitly
found in the next memory slot so no space wasted
with pointers/references;

• inflexible sizing. Expanding an array involves cre-
ating a new (bigger) array in memory, copying
over the elements from the old one, and then free-
ing up the memory associated with the old one.
This is costly.

Please note the two ways an array can be declared in
Java: either by putting the square brackets on the type
(int[] m) or on the variable (int m[])6.

1.5 Immutable Data→Mutable
Data

Immutable to Mutable Data

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5;
x=7;

int x=9;

Java

ML

With ML you saw that data were immutable (i.e. un-
changeable): an expression such as val x=6 wrote the
value 6 to some place in memory and attached the la-
bel x to it. You couldn’t modify that piece of memory
to change the 6 to, say, 5. You could reassign the label
by writing val x=5, but this isn’t the same thing (the
6 would still be in memory somewhere, at least for a
limited time)

Immutability of data is useful in functional languages
because it allows all sorts of clever optimisations to
take place, not least to postpone evaluation knowing
that the result will not change. E.g. pow(x) will be
the same now as later because the function depends
only on its argument, which is stored in some chunk
of memory that we know will not change.

Imperative languages are all about manipulating state
and you can’t very well do so if nothing can be

6See workbook 3

changed! So in Java we can happily assign and re-
assign values:

int x=6; // Declare a label x to

// an integer in memory set to 6

x=5; // Change the value of the memory to 5

1.6 Mathematical Functions →
Procedures

Functions to Procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: public int m(int x, int y) = x*y;

int y = 7;
public int m(x) {

y=y+1;
return x*y;

}

Strictly speaking, a function maps directly to the same
notion in mathematics: its output is solely dependent
on the supplied arguments and there can be no side
effects of calling it (see the Computer Fundamentals
notes)

The output from a procedure can depend on program
state that is not supplied in the arguments and it can
also modify that external state. This is a side effect
because, given only the procedure name and its argu-
ments, we cannot predict what the state of the system
will be after calling it without reading the full proce-
dure definition and analysing the current state of the
computer (e.g. example in slide).

Health warning: Most common languages today are
imperative and many of them use the word ‘function’
as a synonym for ‘procedure’. You will have to use
your intelligence when you hear the words. Similarly,
many people think of ‘procedural programming’ as a
synonym for ‘imperative programming’.

Procedures are much more powerful, but as that awful
line in Spiderman goes, “with great power comes great
responsibility”. Now, that’s not to say that impera-
tive programming makes you into some superhuman
freak who runs around in his pyjamas climbing walls
and battling the evil functionals. It’s just that it in-
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troduces a layer of complexity into programming that
might make the results better but the job harder.

If you turn back to the discussion of functional and
imperative, you can hopefully see that a function with
side effect is much harder for a functional compiler to
deal with since it is ambiguous what the function does
(it doesn’t have one nicely defined return value for a
given argument). Hence functional languages do not
allow side effects, sticking with proper functions.

1.7 Interpreter → Virtual Ma-
chine

We’ve already discussed interpreters vs compilers but
Java could be seen as a hybrid. Sun Microsystems in-
vented Java as the web started to take off and suddenly
many different devices with many different architec-
tures were communicating. They wanted to produce
programs that could be run on any machine. They
could have sent source code to an interpreter in the
browser (a valid approach - it’s what Javascript does),
but they i) wanted to get the best performance they
could and ii) realised that there are times when you
want to distribute binary files not source code.

Interpreter to Virtual Machine

 Java was born in an era of internet connectivity. SUN 
wanted to distribute programs to internet machines
 But many architectures were attached to the internet 

– how do you write one program for them all? 
 And how do you keep the size of the program small 

(for quick download)?

 Could use an interpreter (  Javascript). But:→

 High level languages not very space­efficient
 The source code would implicitly be there for anyone 

to see, which hinders commercial viability.

 Went for a clever hybrid interpreter/compiler

Java Bytecode I

 SUN envisaged a hypothetical Java Virtual Machine 
(JVM). Java is compiled into machine code (called 
bytecode) for that (imaginary) machine. The bytecode 
is then distributed.

 To use the bytecode, the user must have a JVM that has 
been specially compiled for their architecture.

 The JVM takes in bytecode and spits out the correct 
machine code for the local computer. i.e. is a bytecode 
interpreter

Java Bytecode II

Source Code Java Compiler Bytecode

Developer

Distribute

Unix User

JVM for
x86/Linux

Machine
code

Win User

JVM for
x86/win

Machine
code

Android User

JVM for
ARM

Machine
code ...

So Java is a bit of a half-way house. It compiles high-
level source code into binary files that use a special
instruction set called bytecode. You can think of
this as being machine code for a virtual, generic CPU.
Ironically there are now CPUs that use the bytecode
instruction set but that wasn’t the intention.

So how do we use a bytecode file? The machine run-
ning the program must have a Virtual Machine
(VM), which acts as an interpreter for bytecode,
translating it to the local CPU’s instruction set on
the fly. At first glance, this doesn’t seem to be worth
it—why not just use an interpreter directly? Well,
high level languages are made for humans not CPUs;
the compilation to bytecode does all of the hard work
moving from something that is easy for humans to un-
derstand to something that is easy for a VM to under-
stand. The VM is really just converting machine code
to machine code. The end result is that the VM inter-
preter has much less work to do and therefore overall
performance is increased when you run the program.
As with an interpreter, this is “write once, run any-
where”.
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Java Bytecode III

+ Bytecode is compiled so not easy to reverse 
engineer

+ The JVM ships with tons of libraries which makes 
the bytecode you distribute small

+ The toughest part of the compile (from 
human­readable to computer readable) is done by 
the compiler, leaving the computer­readable 
bytecode to be translated by the JVM (  easier job →

 faster job)→

­ Still a performance hit compared to fully compiled 
(“native”) code

SUN publishes the specification of a Java Virtual Ma-
chine (JVM) and anyone can write one, so there are
plenty available if you want to explore. Start here:

http://java.sun.com/docs/books/jvms/

1.7.1 Viewing Bytecode

Once we have compiled our Java source code using
javac, we end up with a set of .class files. These con-
tain the bytecode and are what we distribute to allow
people to run or program or use our classes.

There is also a javap program which allows you to poke
inside a .class file. For example, you can disassemble a
.class file to see an assembly-like view of the bytecode
using javap -c classfile. E.g. with this input:

public class HelloWorld {

public static void main(String[] args) {

System.out.println("Hello World");

}

}

we get:

Compiled from "HelloWorld.java"

public class HelloWorld extends java.lang.Object{

public HelloWorld();

Code:

0: aload_0

1: invokespecial #1; //Method java/lang/Object."<init>":()V

4: return

public static void main(java.lang.String[]);

Code:

0: getstatic #2; //Field java/lang/System.out:

//Ljava/io/PrintStream;

3: ldc #3; //String Hello World

5: invokevirtual #4; //Method java/io/PrintStream.println:

//(Ljava/lang/String;)V

8: return

}

This probably won’t make a lot of sense to you right
now: that’s OK. Just be aware that we can view the
bytecode and that sometimes this can be a useful way
to figure out exactly what the JVM will do with a bit
of code. You aren’t expected to know the intricacies
of bytecode.
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Lecture 2

Memory Manipulation

Imperative languages manipulate state held in system
memory. They more naturally extend from assembly
and it is useful for us to consider how most imperative
compilers make use of memory.

The Call Stack

Remember the CF course: whenever a procedure is
called we jump to the machine code for the procedure,
execute it, and then jump back to where it was before
and continue on. This means that, before it jumps to
the procedure code, it must save where it is.

We do this using a call stack. A stack is a simple
data structure that is the digital analogue of a stack
of plates: you add and take from the top of the pile
only1. By convention, we say that we push new entries
onto the stack and pop entries from its top. Here the
‘plates’ are called stack frames and they contain the
function parameters, any local variables the function
creates and, crucially, a return address that tells the
CPU where to jump to when the function is done.
When we finish a procedure, we delete the associated
stack frame and continue executing from the return
address it saved.

1See Algorithms I for a full analysis

The Call Stack: Example
1 int twice(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a=50;
4 int b = twice(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

In this example I’ve avoided going down to assembly
code and just assumed that the return address can be
the code line number. This causes a small problem
with e.g. line 4, which would be a couple of machine
instructions (one to get the value of twice{) and one
to store it in b). I’ve just assumed the computer mag-
ically remembers to store the return value for brevity.
This is all very simple and the stack never gets very
big—things are more interesting if we start nesting
functions (i.e. calling functions from within another
function):

Nested Functions

0 0
a=50

0
a=50

d=50
5

0
a=50

d=50
5

d=50
2

100

0
a=50

d=50
5

d=100
2

200

0
a=50

d=50
5

a=200

0
a=50

b=200

1 int twice(int d) return 2*d;
2 int quadruple(int d) return twice(twice(d));
3 int a=50;
4 int b = quadruple(a);
5 ...
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And even more interesting if we start processing re-
cursively:

Recursive Functions
1 int pow (int x, int y) {
2 if (y==0) return 1;
3 int p = pow(x,y-1);
4 return x*p;
5 }
6 int s=pow(2,7);
7 ...

0

y=7
4

x=2

0

y=7
4

x=2

0

y=6
4

x=3

y=7
4

x=2

0

y=6
4

x=2

y=7
4

x=2

0

y=6
4

x=2

...

y=5
4

x=2
y=5

4

x=2

y=4
4

x=2

y=7
4

x=2

0

y=6
4

x=2

y=5
4

x=2

p=16

y=7
4

x=2

0

y=6
4

x=2

p=32

...

0
s=128

We immediately see a problem: computers only have
finite memory so if our recursion is really deep, we’ll be
throwing lots of stack frames into memory and, sooner
or later, we will run out of memory. We call this stack
overflow and it is an unrecoverable error that you’re
almost certainly familiar with from ML. You know that
tail-recursion does better, but:

Tail­Recursive Functions I
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

...

128

t=1
y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

128

128

0
s=128

If you’re in the habit of saying tail-recursive functions
are better, be careful—they’re only better if the com-
piler/interpreter knows that it can optimise them to
use O(1) space. Java compilers don’t...2

2Language designers usually speak of 1tail-call optimisation’
since there is actually nothing special about recursion in this
case: functions that call other functions may be written to use
only tail calls, allowing the same optimisations.

Tail­Recursive Functions II
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

t=1

0 0

y=5

3

x=2

t=4

0
s=128

y=6

3

x=2

t=2
y=4

3

x=2

0

t=8

0 0

y=2

3

x=2

t=32
y=3

3

x=2

t=16

0

y=1

3

x=2

t=64

2.1 Control Loops

However, optimised tail-recursion is equivalent to iter-
ation and imperative languages support explicit itera-
tion through the use of constructs such as while (as per
ML) and for3. The following examples iterate exactly
eight times.

Control Flow: for and while

for( init; boolean_expression; step )

while( boolean_expression )

for (int i=0; i<8; i++) …

int j=0;  for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0;  while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

You may like to look up the other constructs and key-
words for looping4. In particular, look at the ‘do...
while’ and ‘enhanced for’ loops, and the ‘break’ and
‘continue’ keywords.

2.2 The Heap

There’s a subtlety with the stack that we’ve passed
over until now. What if we want a function to cre-
ate something that sticks around after it’s gone? Or

3See Workbook 2
4See workbook 2
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to resize something (say an array)? We talk of mem-
ory being dynamically allocated rather than statically
allocated as per the stack.

Why can’t we dynamically allocate on the stack? Well,
imagine that we do everything on a stack and you have
a function that resizes an array. We’d have to grow the
stack, but not from the top, but where the stack was
put. This rather invalidates our stack and means that
every memory address we have will need to be updated
if it comes after the array.

We avoid this by using a heap5. Quite simply we allo-
cate the memory we need from some large pool of free
memory, and store a pointer in the stack. Pointers are
of known size so won’t ever increase. If we want to
resize our array, we create a new, bigger array, copy
the contents across and update the pointer within the
stack.

The Heap
int[] x = new int[3];
public void resize(int size) {
     int tmp=x;
     x=new int[size];
     for (int=0; i<3; i++)
 x[i]=tmp[i];
}
resize(5);

0

x

size=3

0

x

size=3
5 7 9

5 7 9 0

x

size=5

Heap

Stack

For those who did the Paper 2 O/S course, you should
realise that the heap gets fragmented : as we create
and delete stuff we leave holes in memory. Occasion-
ally we have to spend time ‘compacting’ the holes (i.e.
shifting all the stuff on the heap so that it’s used more
efficiently.

2.3 Pointers and References

Back in CF, we established pointers as variables hold-
ing memory addresses. In FoCS you encountered refer-
ences, which were (sensibly) equated to pointers. Here,
we will be a bit stricter and distinguish between point-
ers and references.

Pointers are simply variables whose value is a mem-
ory address. We can arbitrarily modify them either

5Note: you meet something called a ‘heap’ in Algorithms I:
it is NOT the same thing

accidentally or intentionally and this can lead to all
sorts of problems. Although the symptom is usually
the same: program crash.

References

 Pointers are useful but dangerous
 References can be thought of as 

restricted pointers
 Still just a memory address
 But the compiler limits what we can do to it

 C, C++: pointers and references
 Java: references only
 ML: references only

References6 can be seen as a fix for some of the more
dangerous aspects of pointers. They are still just vari-
ables holding memory addresses, but the compiler (not
the computer) will prevent us from doing certain op-
erations on it to make things safer.

References vs Pointers

Pointers References

Represents a memory 
address

Yes Yes

Can be arbitrarily assigned Yes No

Can be assigned to 
established object

Yes Yes

Can be tested for validity No Yes

The last point is particularly important. A pointer
points to something valid, something invalid, or null

(a special zero-pointer that indicates it’s not ini-
tialised). References, however, either point to some-
thing valid or to null. With a non-null reference, you
know it’s valid. With a non-null pointer, who knows?

For those with experience with pointers, you might
have found pointer arithmetic rather useful at times
(e.g. incrementing a pointer to move one place forward
in an array, etc). You can’t do that with a reference
since it would be a technique to create an invalid, non-
null reference.

6See workbook 3

11



Sun decided that Java would have only references and
no explicit pointers. Whilst slightly limiting, this
makes programming much safer (and it’s one of the
many reasons we teach with Java). Java has two
classes of types: primitive and reference. A primitive
type is a built-in type7. Everything else is a reference
type, including arrays and (as we will see) objects8.

References Example (Java)

{1,2,3,4}
ref2

ref1

{1,6,3,7}
ref2

ref1

int[] ref1 = null;
ref1 = new int[]{1,2,3,4};
int[] ref2 = ref1;

ref1[3]=7;
ref2[1]=6;

In this example, we create a reference and set it to
null. Then we create a new array (using the new

keyword) and assign the reference to point to it. Then
we create another reference with the same value as
ref1. i.e. we have two references pointing to the same
array in memory.

Thus, when we dereference ref1 and make a change,
the change will also affect ref2. We will return to this
shortly.

2.4 Pass-by-value and Pass-by-
reference

Argument Passing

 Pass­by­value. Copy the object into a new 
value in the stack

 Pass­by­reference. Create a reference to the 
object and pass that.

y=3

x=3
void test(int x) {...}
int y=3;
test(y);

y=3

xvoid test(int &x) {...}
int y=3;
test(y);

7See Workbook 1
8See Workbook 3

Note I had to use C here since Java doesn’t have a
pass-by-reference operator such as &.

Pass-by-value. The value of the argument is copied
into a new argument variable (this is what we as-
sumed in the call stack earlier)

Pass-by-reference. Instead of copying the object
(be it primitive or otherwise), we pass a reference
to it. Thus the function can access the original
and (potentially) change it.

When arguments are passed to java functions, you may
hear it said that primitive values are “passed by value”
and arrays are “passed by reference”. I think this is
misleading (and technically wrong).

Passing Procedure Arguments In Java

class Reference {

   public static void update(int i, int[] array) {
      i++;
      array[0]++;
   }

   public static void main(String[] args) {
      int test_i = 1;
      int[] test_array = {1};
      update(test_i, test_array);
      System.out.println(test_i);
      System.out.println(test_array[0]);
   }

}

This example is taken from your practicals9, where
you observed the different behaviour of test i and
test array—the former being a primitive int and the
latter being a reference to an array.

Let’s create a model for what happens when we pass
a primitive in Java, say an int like test i. A new stack
frame is created and the value of test i is copied into
the stack frame. You can do whatever you like to this
copy: at the end of the function it is deleted along
with the stack frame. The original is untouched.

Now let’s look at what happens to the test array vari-
able. This is a reference to an array in memory. When
passed as an argument, a new stack frame is created.
The value of test array (which is just a memory ad-
dress) is copied into a new reference in the stack frame.
So, we have two references pointing at the same thing.
Making modifications through either changes the orig-
inal array.

9See workbook 3
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So we can see that Java actually passes all arguments
by value, it’s just that arguments are either primitives
or references. i.e. Java is strictly pass-by-value10.

The confusion over this comes from the fact that many
people view test array to be the array and not a refer-
ence to it. If you think like that, then Java passes it
by reference, as many books (incorrectly) claim. The
examples sheet has a question that explores this fur-
ther.

Check...

A. “1 1”
B. “1 2”
C. “2 1”
D. “2 2”

public static void myfunction2(int x, int[] a) {
x=1;
x=x+1;
a = new int[]{1};
a[0]=a[0]+1;

}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

myfunction2(num, numarray);
System.out.println(num+" "+numarray[0]);

}

Passing Procedure Arguments In C

void update(int i, int &iref){
  i++;
  iref++;
} 

int main(int argc, char** argv) {
  int a=1;
  int b=1;
  update(a,b);
  printf("%d %d\n",a,b);
}

Things are a bit clearer in other languages, such as
C. They may allow you to specify how something is
passed. In this C example, putting an ampersand (‘&’)
in front of the argument tells the compiler to pass by
reference and not by value.

Having the ability to choose how you pass variables
can be very powerful, but also problematic. Look at
this code:

bool testA(HugeInt h) {

if (h > 1000) return TRUE;

10Don’t believe me? See the Java specification, section 8.4.1.

else return FALSE;

}

bool testB(HugeInt &h) {

if (h > 1000) return TRUE;

else return FALSE;

}

Here I have made a fictional type HugeInt which is
meant to represent something that takes a lot of space
in memory. Calling either of these functions will give
the same answer, but what happens at a low level is
quite different. In the first, the variable is copied (lots
of memory copying required—bad) and then destroyed
(ditto). Whilst in the second, only a reference is cre-
ated and destroyed, and that’s quick and easy.

So, even though both pieces of code work fine, if you
miss that you should pass by reference (just one tiny
ampersand’s difference) you incur a large overhead and
slow your program.

I see this sort of mistake a lot in C++ programming
and I guess the Java designers did too—they stripped
out the ability to specify pass by reference or value
from Java!
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Lecture 3

OOP and Classes

Custom Types

 In OOP we go further
 We include both state and procedures in our type 

definition
 The idea is that each type groups together related 

state and procedures, providing a complete 
implementation of a single concept

 We call such types classes

See Workbook 3

datatype 'a seq = Nil 
                           |  Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;                   

In ML, each time you created a new type (such as se-
quences), you also had to construct a series of helper
functions to manipulate it (e.g. hd(), tail(), merge(),
etc.). There was an implicit link between the data
type and the helper functions, since one was useless
without the other. In OOP, we make this link ex-
plicit by defining classes that contain both state and
behaviour—i.e. the functions become part of the data
type declaration.

Classes, Instances and Objects

 Classes can be seen as templates for representing 
various concepts 

 We create instances of classes in a similar way. 
e.g.

makes two instances of class MyCoolClass.
 An instance of a class is called an object

MyCoolClass m = new  MyCoolClass();
MyCoolClass n = new  MyCoolClass();

Each variable we declare is an instance of the type
we assign. So a declaration such as int a declares an

instance of the primitive int type and assigns it the
name a.

Whenever we create an instance of a class, we call it
an object. The difference between a class an an object
is thus very simple, but you’d be surprised how much
confusion it can cause for novice programmers. Classes
define what properties and methods every object of
the type should have (a template if you will), whilst
each object is a specific implementation with particular
values. So a Person class might specify that a Person
has a name and an age. Our program may instantiate
two Person objects—one might represent 40-year old
Bob; another might represent 20 year-old Alice.

Note that we have just added a keyword to our reper-
toire: new is used to instantiate objects. We follow it
with what looks like a function—this is actually the
constructor for the type as we will see shortly.

Loose Terminology (again!)

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Having made all that fuss about ‘function’ and ‘pro-
cedure’, it only gets worse here: when we’re talking
about a procedure inside a class, it’s often called a
method.

In the wild, you’ll find people use ‘function’, ‘pro-
cedure’ and ‘method’ interchangeably. Thankfully
you’re all smart enough to cope!
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Identifying Classes

 We want our class to be a grouping of 
conceptually-related state and behaviour

 One popular way to group is using grammar
 Noun → Object
 Verb → Method

“A simulation of the Earth's orbit around 
the Sun”

UML: Representing a Class Graphically

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The graphical notation used here is part of UML (Uni-
fied Modeling Language). UML is a standardised set
of diagrams that can be used to describe software in-
dependently of any programming language used to im-
plement it.

UML contains many different diagrams (touched on in
the Software Design course for those doing Paper 2).
In this course we will only use the UML class diagram
such as the one in the slide.

The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more 
students”

 Arrow going right to left says “a Student has exactly 1 
College”

 What it means in real terms is that the College class will 
contain a variable that somehow links to a set of Student 
objects, and a Student will have a variable that 
references a College object.

 Note that we are only linking classes: we don't start 
drawing arrows to primitive types.

Note that the arrowhead must be ‘open’. It is normal
to annotate the head with the multiplicity, but some
programmers are lax on this (for examination pur-
poses, you are expected to annotate the heads). I’ve
shown a dual-headed arrow; if the multiplicity value is
zero, you can leave off the arrowhead and annotation
entirely.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties 
that an object has such as 
colour or size)

Class behaviour (actions 
an object can do)

'Magic' start point 
for the program 
(named main by 
convention)

Create an object of 
type MyFancyClass in 
memory

Create a reference to a 
MyFancyClass object 
and call it c

Access modifier

There are a couple of interesting things to note for later
discussion. Firstly, the word public is used liberally.
Secondly, the main function is declared inside the class
itself and as static. Finally there is the notation String[]
which represents an array of String objects in Java.

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

MyFancyClass *cp = new MyFancyClass() 

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour 

'Magic' start point 
for the program 

Create an object of 
type MyFancyClass and 
call it cc

Access modifier

Create an object of 
type MyFancyClass and 
return a reference to it

Create a pointer to a 
MyFancyClass object and call it cp

This is here just so you can compare. The Java syntax
is based on C/C++ so it’s no surprise that there are a
lot of similarities. This certainly eases the transition
from Java to C++ (or vice-versa), but there are a lot
of pitfalls to bear in mind (mostly related to memory
management).
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3.1 OOP and Classes

OOP Concepts

 OOP provides the programmer with a 
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Let’s be clear here: OOP doesn’t enforce the correct
usage of the ideas we’re about to look at. Nor are
the ideas exclusively found in OOP languages. The
main point is that OOP encourages the use of these
concepts, which is good for software design.

3.1.1 Modularity and Code Re-Use

Modularity and Code Re-Use

 You've long been taught to break down 
complex problems into more tractable 
sub-problems.

 Each class represents a sub-unit of code that (if 
written well) can be developed, tested and 
updated independently from the rest of the 
code.

 Indeed, two classes that achieve the same 
thing (but perhaps do it in different ways) can 
be swapped in the code

 Properly developed classes can be used in 
other programs without modification.

Modularity is extremely important in OOP. It’s the
usual CS trick: break big problems down into chunks
and solve each chunk. In this case, we have large pro-
grams, meaning scope for lots of coding bugs. By iden-
tifying objects in our problem, we can write classes
that represent them. Each class can be developed,
tested and maintained independently of the others (as-
suming we’ve done a good job).

There is a further advantage to breaking a program
down into self-contained objects: those objects can be
ripped from the code and put into other programs.
So, once you’ve developed and tested a class that rep-
resents a Student, say, you can use it in lots of other

programs with minimal effort. Even better, the classes
can be distributed to other programmers so they don’t
have to reinvent the wheel. Therefore OOP strongly
encourages software re-use.

3.1.2 Encapsulation

Encapsulation I

class Student {
   int age;
};

void main() {
   Student s = new Student();
   s.age = 21;

   Student s2 = new Student();
   s2.age=-1;

   Student s3 = new Student();
   s3.age=10055;
}

This code defines a basic Student class, with only one
piece of state per Student. In the main() method we
create three instances of Students. We observe that
nothing stops us from assigning nonsensical values to
the age.

Encapsulation II
class Student {
   private int age;
   
   boolean SetAge(int a) {
      if (a>=0 && a<130) {

age=a;
return true;

      }
      return false;
   }

   int GetAge() {return age;}
}

void main() {
   Student s = new Student();
   s.SetAge(21);
}

Here we have assigned an access modifier called private
to the age variable. This means nothing external to the
class (i.e. no piece of code defined outside of the class
definition) can read or write the age variable1.

Another name for encapsulation is information hiding
or even implementation hiding in some texts. The ba-
sic idea is that a class should expose a clean interface

1See workbook 3
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that allows full interaction with it, but nothing about
its internal state. The general rule is that all state is
private unless there is a very good reason for it not to
be.

To get access to the age variable we define a getAge()
and a setAge() method to allow read and write, re-
spectively. On the face of it, this is just more code
to achieve the same thing. However, we have new op-
tions: by omitting setAge() altogether we can prevent
anyone modifying the age (thereby adding immutabil-
ity!); or we can provide sanity checks in the setAge()
code to ensure we store sensible values.

Encapsulation III

class Location {
   private float x;
   private float y;
   
   float getX() {return x;}
   float getY() {return y;}

   void setX(float nx) {x=nx;}
   void setY(float ny) {y=ny;}
}

class Location {

   private Vector2D v;
   
   float getX() {return v.getX();}
   float getY() {return v.getY();}

   void setX(float nx) {v.setX(nx);}
   void setY(float ny) {v.setY(ny);}
}

Here we have a simple example where we wish to
change the underlying representation of a co-ordinate
(x,y) from raw primitives to a custom Vector2D object.
We can do this without changing the public interface
to the class and hence without having to update any
piece of code that uses the Location class.

You may hear people talking about coupling and cohe-
sion. Coupling refers to how much one class depends
on another. High coupling is bad since it means chang-
ing one class will require you to fix up lots of others.
Cohesion is a qualitative measure of how strongly re-
lated everything in the class is—we strive for high co-
hesion. Encapsulation helps to minimise coupling and
maximise cohesion.

Access Modifiers

Everyone Subclass
Same 

package 
(Java)

Same Class

private X

package (Java) X X

protected X X X

public X X X X

OOP languages feature some set of access modifiers
that allow us to do various levels of data hiding. C++
has the set {public, protected, private}, to which Java
has added package.2 Don’t worry if you don’t yet know
what a “Subclass” is—that’s in the next lecture.

Immutability

 Everything in ML was immutable (ignoring the 
reference stuff). Immutability has a number of 
advantages:
 Easier to construct, test and use
 Can be used in concurrent contexts
 Allows lazy instantiation

 We can use our access modifiers to create 
immutable classes

To make a class immutable:

• Make sure all state is private.

• Consider making state final (this just tells the
compiler that the value never changes once con-
structed).

• Make sure no method tries to change any internal
state.

To quote Effective Java by Joshua Bloch:

“Classes should be immutable unless there’s
a very good reason to make them mutable...

2You’ve met Java packages in your practicals as a way to
group classes together. It’s useful there because you all write
classes with the same names, and having unique packages (based
on your CRSID) allows us to distinguish them when testing.
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If a class cannot be made immutable, limit
its mutability as much as possible.”
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Lecture 4

Inheritance and Polymorphism

Inheritance I

class Student {
   public int age;
   public String name;
   public int grade;   
}

class Lecturer {
   public int age;
   public String name;
   public int salary;    
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that 

we're not really representing
 Both Lecturers and Students are people 

(no, really).
 We can view each as a kind of 

specialisation of a general person
 They have all the properties of a 

person
 But they also have some extra stuff 

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II

class Person {
   public int age;
   Public String name;
}

class Student extends Person {
   public int grade;   
}

class Lecturer extends Person {
   public int salary;    
}

 We create a base class (Person) 
and add a new notion: classes 
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of 

Lecturer and Student
 Lecturer and Student subclass 

Person

Java uses the keyword extends to indicate inheritance
of classes. In C++ it’s a more opaque colon:

class Parent {...};

class Student : public Parent {...};

class Lecturer : public Parent {...};

Representing Inheritance Graphically

name
age
exam_score

Student

name
age
salary

Lecturer

name
age

Person Also known as an “is-a” 
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

Inherited fields

Inheritance1 is an extremely powerful concept that is
used extensively in good OOP. We discussed the “has-
a” relation amongst classes; inheritance adds an “is-a”
concept. E.g. A car is a vehicle that has a steering
wheel.

We speak of an inheritance tree where moving down
the tree makes things more specific and up the tree
more general. Unfortunately, we tend to use an array
of different names for things in an inheritance tree.
For A extends B, you might hear any of:

• A is the superclass of B

• A is the parent of B

• A is the base class of B

• B is the child of A

• B derives from A

• B extends A

• B inherits from A

• B subclasses A

Many students confuse “is-a” and “has-a” arrows in
their UML class diagrams: please make sure you don’t!
Inheritance has an empty triangle for the arrowhead,
whilst association has two ‘wings’.

1See workbook 5
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Widening Conversions

 Student is­a Person
 Hence we can use a Student 

object anywhere we want a 
Person object

 Can perform widening 
conversions (up the tree)

Person

Student

Student s = new Student()

Person p = (Person) s;

“Casting”

public void print(Person p) {...}

Student s = new Student();
print(s);

Implicit cast

Narrowing Conversions

 Narrowing conversions move 
down the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS. Not enough info
In the real object to represent
A Student

Student s = new Student();
Person p = (Person) p;
Students s2 = (Student) p;

OK because underlying object
Is a Student

When we create an object, a specific chunk of memory
is allocated with all the necessary info and a reference
to it returned (in Java). Casting just creates a new
reference with a different type and points it to the
same memory chunk. Everything we need will be in
the chunk if we cast to a parent class (plus some extra
stuff).

If we try to cast to a child class, there won’t be all
the necessary info in the memory so it will fail. But
beware—you don’t get a compiler error in the failed
example above! The compiler is fine with the cast and
instead the program chokes when we try to run that
piece of code—a runtime error.

4.0.3 Inheritance and State

Fields and Inheritance

class Person {
   public String mName;
   protected int mAge;
   private double mHeight;
}

class Student extends Person {

  public void do_something() {
    mName=”Bob”;
    mAge=70;
    mHeight=1.70;
  }

}

Student inherits this as a 
public variable and so 
can access it

Student inherits this as a 
protected variable and so 
can access it

Student inherits this but 
as a private variable and 
so cannot access it 
directly

You will see that the protected access modifier can now
be explained. A protected variable is exposed for read
and write within a class, and within all subclasses of
that class. Code outside the class or its subclasses
can’t touch it directly2.

Fields and Inheritance: Shadowing
class A {   public int x; }

class B extends A {
   public int x;
}

class C extends B {
  public int x;

  public void action() {
      // Ways to set the x in C
      x = 10;
      this.x = 10;

      // Ways to set the x in B
      super.x = 10;
      ((B)this).x = 10;

      // Ways to set the x in A
      ((A)this.x = 10;
  }
}

What happens here?? There is an inheritance tree (A
is the parent of B is the parent of C). Each of these
declares an integer field with the name x. In memory,
you will find three allocated integers for every object
of type C. We say that variables in parent classes with
the same name as those in child classes are shadowed.

Note that the variables are genuinely being shadowed
and nothing is being replaced. This is in contrast to
the behaviour with methods...

NB: A common novice error is to assume that we have
to redeclare a field in its subclasses for it to be inher-
ited: not so. Every field is inherited by a subclass.

2At least, that’s how it is in most languages. Java actually
allows any class in the same Java package to access protected
variables as discussed previously.
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There are two new keywords that have appeared here:
super and this. The this keyword can be used in any
class method3 and provides us with a reference to the
current object. In fact, the this keyword is what you
need to access anything within a class, but because
we’d end up writing this all over the place, it is taken
as implicit. So, for example:

public class A {

private int x;

public void go() {

this.x=20;

}

}

becomes:

public class A {

private int x;

public void go() {

x=20;

}

}

The super keyword gives us access to the direct parent
(one step up in the tree). You’ve met both keywords
in your Java practicals.

4.0.4 Inheriting Methods and Poly-
morphism

It’s all very well inheriting fields, but what happens to
all of the methods?

Methods and Inheritance: Overriding

 We might want to require that every Person can dance.  But 
the way a Lecturer dances is not likely to be the same as the 
way a Student dances...

class Person {
   public void dance() {
      jiggle_a_bit();
   }
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
}

Person defines a 
'default' 
implementation of 
dance()

Lecturer just 
inherits the default 
implementation and 
jiggles

Student overrides 
the default

3By this I mean it cannot be used outside of a class, such as
within a static method: see later for an explanation of these.

Every object that has Person for a parent must have a
dance() method since it is defined in the Person class
and is inherited. The situation so far is directly anal-
ogous to what happens with fields.

Polymorphic Methods

 Assuming Person has a 
default dance() method, 
what should happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 General problem: when we refer to an object via a 
parent type and both types implement a particular 
method: which method should it run? 

Polymorphic Concepts I

 Static polymorphism
 Decide at compile­time
 Since we don't know what the true type of the 

object will be, we just run the parent method
 Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler says “p is of type 
Person”

 So p.dance() should do the 
default dance() action in 
Person

In general static polymorphism4 refers to anything
where decisions are made at compile-time. You may
realise that all the polymorphism you saw in ML was
static polymorphism. The shadowing of fields also fits
this description.

4The etymology of the word polymorphism is from the an-
cient Greek: poly (many)–morph (form)–ism
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Polymorphic Concepts II

 Dynamic polymorphism
 Run the method in the child
 Must be done at run­time since that's when we 

know the child's type
 Type errors cause run­time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler looks in memory 
and finds that the object is 
really a Student

 So p.dance() runs the 
dance() action in Student

This form of polymorphism is OOP-specific and is
sometimes called sub-type or ad-hoc polymorphism.
It’s crucial to good, clean OOP code. Because it must
check types at run-time, there is a performance over-
head associated with dynamic polymorphism. How-
ever, as we’ll see, it gives us much more flexibility and
can make our code more legible.

Beware: Most programmers use the word ‘polymor-
phism’ to refer to dynamic polymorphism.

The Canonical Example I

 A drawing program that can draw 
circles, squares, ovals and stars

 It would presumably keep a list of all 
the drawing objects

 Option 1
 Keep a list of Circle objects, a list of 

Square objects,...
 Iterate over each list drawing each 

object in turn
 What has to change if we want to 

add a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape references
 Figure out what each object really is, 

narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
   if (s is really a Circle) 
      Circle c = (Circle)s;
      c.draw();
   else if (s is really a Square) 
      Square sq = (Square)s;
      sq.draw();
   else if...

The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape 

references
 Let the compiler figure out what to 

do with each Shape reference

 What if we want to add a new 
shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
   s.draw();

Implementations

 Java
 All methods are dynamic polymorphic.

 Python
 All methods are dynamic polymorphic.

 C++
 Only functions marked virtual are dynamic 

polymorphic

 Polymorphism in OOP is an extremely important 
concept that you need to make sure you understand...

C++ allows you to choose whether methods are in-
herited statically (default) or dynamically (explicitly
labelled with the keyword virtual). This can be good
for performance (you only incur the dynamic overhead
when you need to) but gets complicated, especially if
the base method isn’t dynamic but a derived method
is...

The Java designers avoided the problem by enforcing
dynamic polymorphism. You may find reference to
final methods being Java’s static polymorphism since
this gives a compile error if you try to override it
in subclasses. To me, this isn’t quite the same: it’s
not making a choice between multiple implementations
but rather enforcing that there can only be one imple-
mentation!
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Lecture 5

Static Data, Abstract Classes and
Interfaces

5.1 Class-Level Data

Class­Level Data and Functionality I

 A static field is created only once in the program's execution, 
despite being declared as part of a class

public class ShopItem {
   private float mVATRate;
   private static float sVATRate;
   ....
}

One of these created 
every time a new 
ShopItem is 
instantiated. Nothing 
keeps them all in 
sync.

Only one of these created 
ever. Every ShopItem object 
references it.

You don’t even need to instantiate a class to access a
static member. just writing ShopItem.sVATRate would
give you access. You see examples of this in the Math
class provided by Java: you can just call Math.PI to
get the value of pi, rather than creating a Math object
first.

Class­Level Data and Functionality II

 Auto synchronised 
across instances

 Space efficient
17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {
   public static void main(String[] args) {
      ...
   }
}

 Also static methods:

In order for a method to be static, it must not make
use of anything other than local or static variables.
So it can’t use anything that is instance-specific (i.e.
non-static member variables are out).

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

 The compiler can produce more efficient code since no 
specific object is involved

public class Math {
   public float sqrt(float x) {…}
   public double sin(float x) {…}
   public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
   public static float sqrt(float x) {…}
   public static float sin(float x) {…}
   public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs

In your first few practicals you were encouraged to
write static methods to avoid having to instantiate ob-
jects all over the place.
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5.2 Abstract Methods and
Classes

Abstract Methods

 Sometimes we want to force a class to implement a 
method but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this
 It has no implementation whatsoever

class abstract Person {
   public abstract void dance();
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
   public void dance() {
      jiggle_a_bit();
   }
}

An abstract method can be thought of as a contractual
obligation: any non-abstract class that inherits from
this class will have that method implemented.

Abstract Classes

 Note that I had to declare the class abstract too. 
This is because it has a method without an 
implementation so we can't directly instantiate a 
Person.

 All state and non­abstract methods are inherited as 
normal by children of our abstract class

 Interestingly, Java allows a class to be declared 
abstract even if it contains no abstract methods!

public abstract class Person {
   public abstract void dance();
}

class Person {
   public:
      virtual void dance()=0;
}Java C++

Abstract classes allow us to partially define a type.
Because it’s not fully defined, you can’t make an ob-
ject from an abstract class (try it). Only once all of
the ‘blanks’ have been filled in can we create an ob-
ject from it. This is particularly useful when we want
to represent high level concepts that do not exist in
isolation.

Depending on who you’re talking to, you’ll find differ-
ent terminology for the initial declaration of the ab-
stract function (e.g. the public abstract void dance()
bit). Common terms include method prototype and
method stub.

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the 
class or method is 
abstract

You have to look at UML diagrams carefully since
the italics that represent abstract methods or classes
aren’t always obvious on a quick glance.

5.3 Multiple Inheritance and
Interfaces

Harder Problems

 Given a class Fish and a class DrawableEntity, how do 
we make a BlobFish class that is a drawable fish?

Fish

DrawableEntity

BlobFish

FishDrawableEntity BlobFish

X Dependency
between two
independent

concepts

X Conceptually wrong

Multiple Inheritance

 If we multiple inherit, we 
capture the concept we want

 BlobFish inherits from both and 
is­a Fish and is­a 
DrawableEntity

 C++:

 But... 

Fish DrawableEntity

BlobFish

+ swim() + draw()

+ swim()
+ draw()

class Fish {…}
class DrawableEntity {…}

class BlobFish : public Fish, 
                         public DrawableEntity {...}
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This is the obvious and (perhaps) sensible option that
manages to capture the concept nicely.

Multiple Inheritance Problems

 What happens here? Which of 
the move() methods is 
inherited?

 Have to add some grammar 
to make it explicit

 C++:

 Yuk.

Fish DrawableEntity

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();
bf->Fish::move();
bf->DrawableEntity::move();

Many texts speak of the “dreaded diamond”. This
occurs when a base class has two children who are the
parents of another class through multiple inheritance
(thereby forming a diamond in the UML diagram). If
the two classes in the middle independently override
a method from the top class, the bottom class suffers
from the problem in this slide.

Fixing with Abstraction

 Actually, this problem 
goes away if one or 
more of the conflicting 
methods is abstract

Fish DrawableEntity

BlobFish

+ move() + move()

+ move()

The problem goes away here because the methods are
abstract and hence have no implementation that can
conflict.

Java's Take on it: Interfaces
 Classes can have at most one parent. Period.
 But special 'classes' that are totally abstract can 

do multiple inheritance – call these interfaces

<<interface>>
       Drivable

+ turn()
+ brake()

Car

<<interface>>
    Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

Interface Drivable {
   public void turn();
   public void brake();
}

Interface Identifiable {
   public void getIdentifier();
}

class Bicycle implements Drivable {
   public void turn() {...}
   public void brake() {… }
}

class Car implements Drivable, Identifiable {
   public void turn() {...}
   public void brake() {… }
   public void getIdentifier() {...}
}

So Java allows you to inherit from one class only
(which may itself inherit from one other, which may
itself...). Many programmers coming from C++ find
this limiting, but it just means you have to think of
another way to represent your classes (often a better
way, although not always!).

A Java interface1 is essentially just a class that has:

• No state whatsoever; and

• All methods abstract.

This is a greatly simplified concept that allows for mul-
tiple inheritance without any chance of conflict. Inter-
faces are represented in our UML class diagram with
a preceding <<interface>> label and inheritance oc-
curs via the implements keyword rather than through
extends.

Interfaces are so important in Java they are considered
to be the third reference type (the other two being
classes and arrays). Using interfaces encourages high
abstraction level in code, which is generally a good
thing since it makes the code more flexible/portable.
However, it is possible to overdo it, ending up with 20
files where one would do...

1See workbook 5
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Lecture 6

Construction, Destruction and Error
Handling

Constructors

 You will have noticed that the RHS looks rather like a 
function call, and that's exactly what it is.

 It's a method that gets called when the object is 
constructed, and it goes by the name of a constructor 
(it's not rocket science). It maps to the datatype 
constructors you saw in ML.

 We use constructors to initialise the state of the class in a 
convenient way
 A constructor has the same name as the class
 A constructor has no return type

MyObject m = new MyObject();

You can’t specify a return type for a constructor be-
cause it is always called using the special new keyword,
which must return a reference to the newly constructed
object. You can, however, specify arguments for a con-
structor in the usual way for a method.

Constructor Examples

public class Person {
   private String mName;

   // Constructor
   public Person(String name) {
       mName=name;
   }

   public static void main(
String[] args) {

     Person p = 
          new Person(“Bob”);
   }

}

class Person {
   private:
      std::string mName;

   public:
      Person(std::string &name){
          mName=name;
      }
};

int main (int argc, 
               char ** argv) {
   Person p (“Bob”);
}

Java C++

As with many OOP features, not all languages sup-
port it. Python, for example, doesn’t have construc-
tors. It does have a single init method in each class

that acts a bit like a constructor but technically isn’t
(python fully constructs the object, and returns a ref-
erence that gets passed to init if it exists—similar,
but not quite the same thing.

Default Constructor

public class Person {
   private String mName;

   public static void main(String[] args) {
     Person p = new Person();
   }

}

 If you specify no constructor at all, Java 
fills in an empty one for you

 Here it creates Person() for us
 The default constructor takes no 

arguments (since it wouldn't know what 
to do with them!)

In languages such as Java and C++ every class has
a constructor. The only question is whether it’s been
specified manually by the programmer or whether the
compiler has filled in a default (empty) constructor.

Multiple Constructors

public class Student {
    private String mName;
    private int mScore;

    public Student(String s) {
       mName=s;
       mScore=0;
    }

    public Student(String s, int sc) {
        mName=s; 
        mScore=sc;
    }

    public static void main(String[] args) {
      Student s1 = new Student("Bob");
      Student s2 = new Student("Bob",55);
    }
  }

 You can specify as many 
constructors as you like.

 Each constructor must 
have a different 
signature (argument list)
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Again, not all languages support this. Python doesn’t
support multiple overloaded init methods, and this
can be a bit frustrating,

Beware: As soon as you specify any constructor
whatsoever (regardless of the arguments), no default
constructor will be generated. The default constructor
only applies when the compiler notices that there is no
way to construct an object of this type, which can’t
be intentional or what’s the point of writing the class?

Constructor Chaining

 When you construct an object of a type with 
parent classes, we call the constructors of all of 
the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

In reality, Java asserts that the first line of a construc-
tor always starts with super(), which is a call to the
parent constructor (which itself starts with super(),
etc.). If it does not, the compiler adds one for you:

public class Person {

public Person() {

}

}

becomes:

public class Person {

public Person() {

super();

}

}

In other languages that support multiple inheritance,
this becomes more complex since there may be more
than one parent and a simple keyword like super isn’t
enough. Instead they support manually specifying the
constructor parameters for the parents. E.g. for C++:

class Child : public Parent1, Parent2 {

public:

Child() : Parent1("Alice"), Parent2("Bob") {...}

}

Chaining without Default Constructors

 What if your classes have explicit constructors that take 
arguments? You need to explicitly chain 

 Use super in Java:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
     mName=name;
}

public Student () {
    super(“Bob”);
}

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or 

memory that we might have created especially for the 
object

class FileReader {
   public:
   
      // Constructor
      FileReader() {
         f = fopen(“myfile”,”r”);
      }

      // Destructor
      ~FileReader() {
         fclose(f);
      }

   private :
      FILE *file;
}

int main(int argc, char ** argv) {

  // Construct a FileReader Object
  FileReader *f = new FileReader();

  // Use object here
  ...

  // Destruct the object
  delete f;

}

C++

It will shortly become apparent why I used C++ and
not Java for this example.

Cleaning Up

 A typical program creates lots of objects, not all of which need to 
stick around all the time

 Approach 1:
 Allow the programmer to specify when objects should be 

deleted from memory
 Lots of control, but what if they forget to delete an object?

 A “memory leak”

 Approach 2:
 Delete the objects automatically (Garbage collection)
 But how do you know when an object will never be used again 

and can be deleted??
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Cleaning Up (Java) I

 Java reference counts. i.e. it keeps track of how many 
references point to a given object.  If there are none, 
the programmer can't access that object ever again so 
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Note that reference counting has an associated cost
- every object needs more memory (to store the ref-
erence count) and we have to monitor changes to all
references to keep the counts up to date.

Cleaning Up (Java) II

 Actual deletion occurs through a garbage collector
 A separate process that periodically scans the 

objects in memory for any with a reference count of 
zero, which it then deletes.

 Running the garbage collector is obviously not free. If 
your program creates a lot of short­term objects, you 
will soon notice the collector running
 Gives noticeable pauses to your application while 

it runs.
 But minimises memory leaks (it does not prevent 

them...)

Cleaning Up (Java) III

 One problem with GC is we have no idea when an 
object will actually be deleted. The GC may even 
decide to defer the deletion until a future run.

 This causes issues for destructors – it might be ages 
before a resource is closed and available again!

 Therefore Java doesn't have destructors
 It does have finalizers that gets run when the GC 

deletes an object
 BUT there's no guarantee an object will ever get 

garbage collected in Java...
 Garbage Collection != Destruction

Because you can’t tell when finalizer methods will get
called in Java, their value is greatly reduced. It’s ac-
tually quite rare to see them in Java in my experience.

6.1 Exceptions

Error Handling

 The traditional imperative way to handle errors is to 
return a value that indicates success/failure/error

 Problems:
 Could ignore the return value
 Have to keep checking what the return values are 

meant to signify, etc.
 The actual result often can't be returned in the same 

way

public int divide(double a, double b) {
   if (b==0.0) return -1; // error
   double result = a/b;
   return 0; // success
}

…

if ( divide(x,y)<0) System.out.println(“Failure!!”);

In some cases the range of potential results is smaller
then the range of return values, in which case we can
use the ‘spare’ values to signify error. E.g. If we know
the result will be positive, we can use -1 to signify an
error. Whilst this works (and is extremely common in
C), it means that we have to write 10 or more lines of
error checking code for every line of meaningful pro-
gram!

Exceptions I

 An exception is an object that can be thrown or raised 
by a method when an error occurs and caught or 
handled by the calling code

public double divide(double a, double b) 
throws DivideByZeroException {

   if (b==0) throw DivideByZeroException();
   else return a/b
}

…

try {
   double z = divide(x,y);
}
catch(DivideByZeroException d) {
   // Handle error here
}

Of course, you met exceptions in ML and there isn’t
much difference here. There is a tendency to use the
terminology throw/catch rather than raise/handle in
OOP languages—I don’t know why.
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Exceptions II

 Advantages:
 Class name can be  descriptive (no need to look up error 

codes)
 Doesn't interrupt the natural flow of the code by requiring 

constant tests
 The exception object itself can contain state that gives 

lots of detail on the error that caused the exception
 Can't be ignored, only handled

There is a lot more we could say about exceptions, but
you have the basic tools to understand them and they
will be covered in your practical Java course1. Just
be aware that exceptions are very powerful and very
popular in most modern programming languages. If
you’re struggling to understand them, take a look at:

http://java.sun.com/docs/books/tutorial/

essential/exceptions/

1See workbook 4
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Lecture 7

Copying and Cloning

Cloning I

 Sometimes we really do want to copy an object

 Java calls this cloning
 We need special support for it

Person object
(name = 

“Bob”)

r

Person object
(name = 

“Bob”)

r

Person object
(name = 

“Bob”)

r_copy

Cloning II

 Every class in Java ultimately inherits from the 
Object class
 This class contains a clone() method so we just 

call this to clone an object, right?
 This can go horribly wrong if our object contains 

reference types (objects, arrays, etc)

Java is unusual in that it really, really wants you to
use OOP. In your practicals you must have noticed
that, even to do simple procedural stuff, you had to
encase everything in a class—even the main() method.
A further decision they made is that ultimately all
classes will inherit from a special Object class. i.e. the
top of all inheritance trees is Object even though we
never explicitly say so in code...

Shallow and Deep Copies

public class MyClass {
   private MyOtherClass moc;
}

MyClass 
object Shallo

w

MyOtherClass 
object MyClass 

object

MyOtherClass 
object

MyClass 
object

MyOtherClass 
object

MyClass 
object

MyClass 
object

MyOtherClass 
object

Deep

Java Cloning

 So do you want shallow or deep?
 The default implementation of clone() performs a shallow 

copy
 But Java developers were worried that this might not be 

appropriate: they decided they wanted to know for sure 
that we'd thought about whether this was appropriate

 Java has a Cloneable interface
 If you call clone on anything that doesn't extend this 

interface, it fails
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Clone Example I

 public class Velocity {
    public float vx;
    public float vy;
    public Velocity(float x, float y) {
        vx=x;
        vy=y;
    }
  };
  
  public class Vehicle {
    private int age;
    private Velocity vel;
    public Vehicle(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }
  };

Clone Example II

 

  public class Vehicle implements Cloneable {
    private int age;
    private Velocity vel;
    public Vehicle(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }

    public Object clone() {
        return super.clone();
    }

  };

Here we fill in the clone() method using super.clone().
You can think of this as doing a byte-for-byte copy of
an object in memory. Any primitive types (such as
age) will therefore be copied. And references will also
be copied, but not the objects they point to. Hence
this much gets us a shallow copy.

Clone Example III
  public class Velocity implement Cloneable {
        ....
       public Object clone() {
           return super.clone();
       }
  };  
 
  public class Vehicle implements Cloneable {
    private int age;
    private Velocity v;
    public Student(int a, float vx, float vy) {
        age=a;
        vel = new Velocity(vx,vy);
    }

    public Object clone() {
        Vehicle cloned = (Vehicle) super.clone();
        cloned.vel = (Velocity)vel.clone();
        return cloned;
    }
  };

A deep clone requires that we clone the objects that
are referenced (and they, in turn clone any objects

they reference, and so on). Here we make Velocity
cloneable and make sure to clone the member variable
that Vehicle has.

Marker Interfaces

 If you look at what's in the Cloneable interface, you'll find it's 
empty!!  What's going on?

 Well, the clone() method is already inherited from Object so it 
doesn't need to specify it

 This is an example of a Marker Interface
 A marker interface is an empty interface that is used to 

label classes
 This approach is found occasionally in the Java libraries

You might also see these marker interfaces referred to
as tag interfaces. They are simply a way to label or tag
a class. They can be very useful, but equally they can
be a pain (you can’t dynamically tag a class, nor can
you prevent a tag being inherited by all subclasses).
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Lecture 8

Collections and Generics

Java Class Library

 Java the platform contains around 4,000 
classes/interfaces
 Data Structures
 Networking, Files
 Graphical User Interfaces
 Security and Encryption
 Image Processing
 Multimedia authoring/playback
 And more...

 All neatly(ish) arranged into packages (see API docs)

Remember Java is a platform, not just a programming
language. It ships with a huge class library : that is to
say that Java itself contains a big set of built-in classes
for doing all sorts of useful things like:

• Complex data structures and algorithms

• I/O (input/output: reading and writing files, etc)

• Networking

• Graphical interfaces

Of course, most programming languages have built-
in classes, but Java has a big advantage. Because
Java code runs on a virtual machine, the underlying
platform is abstracted away. For C++, for example,
the compiler ships with a fair few data structures, but
things like I/O and graphical interfaces are completely
different for each platform (Windows, OSX, Linux,
whatever). This means you usually end up using lots
of third-party libraries to get such extras—not so in
Java.

There is, then, good reason to take a look at the Java
class library to see how it is structured.

8.0.1 Collections and Generics

Java's Collections Framework

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Collection

<<interface>>
Iterable

 Important chunk of the class library
 A collection is some sort of grouping of 

things (objects)
 Usually when we have some grouping we 

want to go through it (“iterate over it”)

 The Collections framework has two main 
interfaces: Iterable and Collections. They 
define a set of operations that all classes in 
the Collections framework support

 add(Object o), clear(), isEmpty(), etc.

The Java Collections framework is a set of interfaces
and classes that handles groupings of objects and al-
lows us to implement various algorithms invisibly to
the user (you’ll learn about the algorithms themselves
next term).

Major Collections Interfaces I

 <<interface>> Set
 Like a mathematical set in DM 1

 A collection of elements with no duplicates

 Various concrete classes like TreeSet (which keeps the set elements sorted)

 <<interface>> List
 An ordered collection of elements that may contain duplicates

 ArrayList, Vector, LinkedList, etc.

 <<interface>> Queue
 An ordered collection of elements that may contain duplicates and supports 

removal of elements from the head of the queue

 PriorityQueue, LinkedLIst, etc.

A
B

C

A

B

C

B

A

B

C

B

32



Major Collections Interfaces II

 <<interface>> Map
 Like relations in DM 1, or dictionaries in ML

 Maps key objects to value objects

 Keys must be unique

 Values can be duplicated and (sometimes) null.

K1
A

B

B

K3 K2

There are other interfaces in the Collections class, and
you may want to poke around in the API documenta-
tion. In day-to-day programming, however, these are
likely to be the interfaces you use.

Obviously, you can’t use the interfaces directly. So
Java includes a few implementations that implement
sensible things. Again, you will find them in the API
docs, but as an example for Set:

TreeSet. A Set that keeps the elements in sorted order
so that when you iterate over them, they come out
in order.

HashSet. A Set that uses a technique called hashing
(don’t worry — you’re not meant to know about
this yet) that happens to make certain operations
(add, remove, etc) very efficient. However, the
order the elements iterate over is neither obvious
nor constant.

Now, don’t worry about what’s going on behind the
scenes (that comes in the Algorithms course), just
recognise that there are a series of implementations
in the class library that you can use, and that each
has different properties.

Iteration

 for loop

 foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
...
for (int i=0; i<list.size(); i++) {
    Object next = list.get(i);
}

LinkedList list = new LinkedList();
...
for (Object o : list) {

}

The foreach notation works for arrays too and it’s par-
ticularly neat when we have nested iteration. E.g. it-
eration over all students and their subjects:

for (Student stu : studentlist)

for (Subject sub : subjectlist)

getMarks(stu, sub);

versus:

for (int i=0; i<studentlist.size(); i++) {

Student stu = (Student)studentlist.get(i);

for (int j=0; i<subjectlist.size(); i++) {

Subject sub = (Subject)subjectlist.get(j);

getMarks(stu, sub);

}

}

Iterators

 What if our loop changes the structure?

 Java introduced the Iterator class

 Safe to modify structure

for (int i=0; i<list.size(); i++) {
    If (i==3) list.remove(i);
}

Iterator it = list.iterator();

while(it.hasNext()) {Object o = it.next();}

for (; it.hasNext(); ) {Object o = it.next();}

while(it.hasNext()) {
    it.remove();
}

Note that the foreach structure isn’t useful with
Iterators. So we sacrifice some code readability for the
ability to adjust the Collection’s structure as we go.

Collections and Types I

 The original Collections 
framework just dealt with 
collections of Objects
 Everything in Java “is-a” 

Object so that way our 
collections framework will 
apply to any class 

 But this leads to:
 Constant casting of the 

result (ugly)
 The need to know what 

the return type is
 Accidental mixing of types 

in the collection

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
      Object o = it.next();
      Integer i = (Integer)o;
}
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Collections and Types II

// Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {
      Object o = it.next();
      Integer i = (Integer)o;
}

Going to fail for the 
second element! 
(But it will compile: 
the error will be at 
runtime)

Java Generics

 To help solve this sort of problem, Java introduced 
Generics in JDK 1.5

 Basically, this allows us to tell the compiler what is 
supposed to go in the Collection

 So it can generate an error at compile-time, not run-time

// Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator<Integer> it = ts.iterator();
while(it.hasNext()) {
      Integer i = it.next();
}

Won't even compile

No need to cast :-)

Now, assuming you’re still awake (long shot, I know),
you might have noticed that this is all about deter-
mining types at compile-time rather than dynamically
at run-time. Which sounds a lot like static polymor-
phism. And so it is—although it’s a special form of
it known as parametric polymorphism. If you think
about it, it maps almost directly to what you called
polymorphism in ML...

Generics Declaration and Use

public class Coordinate <T> {
    private T mX;
    private T mY;

    public Coordinate(T x, T y) {
        mX=x; mY=y;
    }

    public T getX() { return mX; }
    public T getY() { return mY; }
}

Coordinate<Double> c = 
    New Coordinate<Double>(1.0,1.0);

Double d = c.getX();

Generics and SubTyping

// Object casting
Person p = new Person();
Animal o = (Animal) p;

// List casting
List<Person> plist = new LinkedList<Person>();
List<Animal> alist = (List<Animal>)plist;

<<interface>>
Collection

Person

<<interface>>
Collection

So a list of Persons is a list of Animals, yes?

Animal

34



Lecture 9

Object Comparison

Comparing Primitives

>    Greater Than

>= Greater than or equal to

== Equal to

!= Not equal to

< Less than

<= Less than or equal to

 Clearly compare the value of a primitive
 But what does (ref1==ref2) do??

 Test whether they point to the same object?
 Test whether the objects they point to have the 

same state?

The problem is that we deal with references to objects,
not objects. So when we compare two things, do we
compare the references of the objects they point to?
As it turns out, both can be useful so we want to
support both.

Option 1: a==b, a!=b

 These compare the references directly

Person p1 = new Person(“Bob”);
Person p2 = new Person(“Bob”);

(p1==p2);

(p1!=p2);

(p1==p1);

False (references differ)

True (references differ)

True

Option 2: The equals() Method

 Object defines an equals() method. By default, this method 
just does the same as ==.
 Returns boolean, so can only test equality
 Override it if you want it to do something different
 Most (all?) of the core Java classes have properly 

implemented equals() methods
public EqualsTest {
    public int x = 8;

    public boolean equals(Object o) {
        EqualsTest e = (EqualsTest)o;
        return (this.x==e.x);
    }
    
    public static void main(String args[]) {
        EqualsTest t1 = new EqualsTest();
        EqualsTest t2 = new EqualsTest();
        System.out.println(t1==t2);
        System.out.println(t1.equals(t2));
    }
}

I find this mildly irritating: every class you use will
support equals() but you’ll have to check whether or
not it has been overridden to do something other than
==. Personally, I only use equals() on objects from
core Java classes, where I trust it to have been done
properly.

Option 3: Comparable<T> Interface I

int compareTo(T obj);

 Part of the Collections Framework
 Doesn't just tell us true or false, but smaller, same, or 

larger: useful for sorting.
 Returns an integer, r:

 r<0 This object is less than obj

 r==0 This object is equal to obj

 r>0 This object is greater than obj
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Option 3: Comparable<T> Interface II
public class Point  implements Comparable<Point> {
     private final int mX;
     private final int mY;
     public Point (int, int y) { mX=x; mY=y; }

     // sort by y, then x
     public int compareTo(Point p) {
         if ( mY>p.mY) return 1;
         else if (mY<p.mY) return -1;
         else {
             if (mX>p.mX) return 1;
             else if (mX<p.mX) return -1;
             else return 0.
         }
     }
}

// This will be sorted automatically by y, then x
Set<Point> list = new TreeSet<Point>(); 

Note that the class itself contains the information on
how it is to be sorted: we say that it has a natural
ordering.

Option 4: Comparator<T> Interface

int compareTo(T obj1, T obj2)

 Also part of the Collections framework and 
allows us to specify a particular comparator for 
a particular job

 E.g. a Person might have a compareTo() 
method that sorts by surname.  We might wish 
to create a class AgeComparator that sorts 
Person objects by age.  We could then feed 
that to a Collections object. 

At first glance, it may seem that Comparator doesn’t
add much over Comparable. However it’s very useful
to be able to specify Comparators and apply them
dynamically to Collections. If you look in the API,
you will find that Collections has a static method
sort(List l, Comparator c).

So, imagine we have a class Student that stores the
forename, surname and exam percentage as a String,
String, and a float respectively. The natural ordering
of the class sorts by surname. We might then sup-
ply two Comparator classes: ForenameComparator and
ExamScoreComparator that do as you would expect.
Then we could write:

List list = new SortedList();

// Populate list

// List will be sorted naturally

...

// Sort list by forename

Collections.sort(list, new ForenameComparator());

// Sort list by exam score

Collections.sort(list, new ExamScoreComparator());
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Lecture 10

Design Patterns (2 lectures]

Design Patterns

 A Design Pattern is a general reusable solution to a 
commonly occurring problem in software design

 Coined by Erich Gamma in his 1991 Ph.D. thesis
 Originally 23 patterns, now many more. Useful to 

look at because they illustrate some of the power of 
OOP (and also some of the pitfalls)

 We will only consider a subset

Coding anything more complicated than a toy pro-
gram usually benefits from forethought. After you’ve
coded a few medium-sized pieces of object-oriented
software, you’ll start to notice the same general prob-
lems coming up over and over. And you’ll start to au-
tomatically use the same solutions to them. We need
to make sure that set of default solutions is a good
one!

In his 1991 PhD thesis, Erich Gamma compared this to
the field of architecture, where recurrent problems are
tackled by using known good solutions. The follow-on
book (Design Patterns: Elements of Reusable
Object-Oriented Software, 1994) identified a se-
ries of commonly encountered problems in object-
oriented software design and 23 solutions that were
deemed elegant or good in some way. Each solution is
known as a Design Pattern:

A Design Pattern is a general reusable solution
to a commonly occurring problem in software
design.

The modern list of design patterns is ever-expanding
and there is no shortage of literature on them. In this
course we will look at a few key patterns and how they
are used.

10.0.2 So Design Patterns are like cod-
ing recipes?

No. Creating software by stitching together a series
of Design Patterns is like painting by numbers — it’s
easy and it probably works, but it doesn’t produce a
Picasso! Design Patterns are about intelligent solu-
tions to a series of generalised problems that you may
be able to identify in your software. You might find
they don’t apply to your problem, or that they need
adaptation. You simply can’t afford to disengage your
brain (sorry!).

10.0.3 Why Bother Studying Them?

Design patterns are useful for a number of things, not
least:

1. They encourage us to identify the fundamental
aims of given pieces of code

2. They save us time and give us confidence that our
solution is sensible

3. They demonstrate the power of object-oriented
programming

4. They demonstrate that näıve solutions are bad

5. They give us a common vocabulary to describe
our code

The last one is important: when you work in a team,
you quickly realise the value of being able to succinctly
describe what your code is trying to do. If you can re-
place twenty lines of comments1 with a single word, the
code becomes more readable and maintainable. Fur-
thermore, you can insert the word into the class name
itself, making the class self-describing.

1You are commenting your code liberally, aren’t you?
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10.0.4 The Open-Closed Principle

The Open-Closed Principle

Classes should be open for extension but 
closed for modification

 i.e. we would like to be able to modify the 
behaviour without touching its source code

 This rule-of-thumb leads to more reliable large 
software and will help us to evaluate the 
various design patterns

To help understand why this is helpful, it’s useful to
think about multiple developers using a software li-
brary. If they want to alter one of the classes in the
library, they could edit its source code. But this would
mean they had a customised version of the library
that they wouldn’t be able to update when new (bug-
reduced) versions appeared. A better solution is to
use the library class as a base class and implement the
minor changes that are desired in the custom child.
So, if you’re writing code that others will use (and you
should always assume you are in OOP) you should
make it easy for them to extend your classes and dis-
courage direct editing of them.
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10.0.5 The Decorator Pattern

Decorator

Abstract problem:  How can we add 
state or methods at runtime?

Example problem: How can we 
efficiently support gift-wrapped books 
in an online bookstore?

Solution 1: Add variables to the established Book
class that describe whether or not the product is to be
gift wrapped.

Solution 2: Extend Book to create WrappedBook.

Solution 3: (Decorator) Extend Book to create
WrappedBook and also add a member reference to a
Book object. Just pass through any method calls to
the internal reference, intercepting any that are to do
with shipping or price to account for the extra wrap-
ping behaviour.

Decorator in General

 The decorator pattern 
adds state and/or 
functionality to an object  
dynamically  

So we take an object and effectively give it extra state
or functionality. I say ‘effectively’ because the actual
object in memory is untouched. Rather, we create a
new, small object that ‘wraps around’ the original. To
remove the wrapper we simply discard the wrapping
object. Real world example: humans can be ‘deco-
rated’ with contact lenses to improve their vision.

Note that we can use the pattern to add state
(variables) or functionality (methods), or both if we

want. In the diagram above, I have explicitly al-
lowed for both options by deriving StateDecorator and
FunctionDecorator. This is usually unnecessary — in
our book seller example we only want to decorate
one thing so we might as well just put the code into
Decorator.

39



10.0.6 The State Pattern

State

Abstract problem:  How can we let an 
object alter its behaviour when its 
internal state changes?

Example problem:  Representing 
academics as they progress through 
the rank

Solution 1: Have an abstract Academic class which
acts as a base class for Lecturer, Professor, etc.

Solution 2: Make Academic a concrete class with
a member variable that indicates rank. To get rank-
specific behaviour, check this variable within the rele-
vant methods.

Solution 3: (State) Make Academic a concrete
class that has-a AcademicRank as a member. Use
AcademicRank as a base for Lecturer, Professor, etc.,
implementing the rank-specific behaviour in each..

State in General

 The state pattern allows 
an object to cleanly alter 
its behaviour when 
internal state changes
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10.0.7 The Strategy Pattern

Strategy

Abstract problem:  How can we select an 
algorithm implementation at runtime?

Example problem: We have many possible 
change-making implementations. How do 
we cleanly change between them?

Solution 1: Use a lot of if...else statements in the
getChange(...) method.

Solution 2: (Strategy) Create an abstract
ChangeFinder class. Derive a new class for each of our
algorithms.

Strategy in General

 The strategy pattern allows us to cleanly interchange 
between algorithm implementations

Note that this is essentially the same UML as the State
pattern! The intent of each of the two patterns is quite
different however:

• State is about encapsulating behaviour that is
linked to specific internal state within a class.

• Different states produce different outputs (exter-
nally the class behaves differently).

• State assumes that the state will continually
change at run-time.

• The usage of the State pattern is normally in-
visible to external classes. i.e. there is no set-
State(State s) function.

• Strategy is about encapsulating behaviour in a
class. This behaviour does not depend on internal
variables.

• Different concrete Strategys may produce exactly
the same output, but do so in a different way.
For example, we might have a new algorithm to
compute the standard deviation of some variables.
Both the old algorithm and the new one will pro-
duce the same output (hopefully), but one may be
faster than the other. The Strategy pattern lets
us compare them cleanly.

• Strategy in the strict definition usually assumes
the class is selected at compile time and not
changed during runtime.

• The usage of the Strategy pattern is normally vis-
ible to external classes. i.e. there will be a set-
Strategy(Strategy s) function or it will be set in
the constructor.

However, the similarities do cause much debate and
you will find people who do not differentiate between
the two patterns as strongly as I tend to.
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10.0.8 The Composite Pattern

Composite

Abstract problem:  How can we treat a 
group of objects as a single object?

Example problem: Representing a DVD 
box-set as well as the individual films 
without duplicating info and with a 10% 
discount

The solution is fairly straightforward. We want to be
able to treat a group of DVDs to just like a single DVD,
so BoxSet inherits from DVD. To avoid repeating the
description information and to keep pricing in sync,
BoxSet must also have access to the constituent DVD
objects.

Composite in General

 The composite pattern 
lets us treat objects and 
groups of objects 
uniformly

If you’re still awake, you may be thinking this looks
like the Decorator pattern, except that the new class
supports associations with multiple DVDs (note the *
by the arrowhead). Plus the intent is different—we
are not adding new functionality to objects but rather
supporting the same functionality for groups of those
objects.

If you try to make a graphical representation of com-
posites, you’ll end up with some form of tree with each
composite a node and each single entity a leaf. Many
texts use this terminology when discussing the com-
posite pattern.
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10.0.9 The Singleton Pattern

Singleton

Abstract problem:  How can we ensure 
only one instance of an object is created 
by developers using our code?

Example problem: You have a class that 
encapsulates accessing a database over 
a network. When instantiated, the object 
will create a connection and send the 
query. Unfortunately you are only allowed 
one connection at a time.

A valid solution to this is to make sure you close the
database connection after using it, so you can just
create Database objects every time you have a query.
However, what if you forgot to close it? And what if
making the connection was slow (they always are in
computer time...).

Instead we exploit our access modifiers and create a
private constructor (to ensure no-one can create ob-
jects at will) and add in a static member (the only in-
stance we will ever have). Finally, we include a static
getter for this member.

Ideally the instantiation of the Database should be
lazy—i.e. only done on the first call to the getter.

Singleton in General

 The singleton pattern 
ensures a class has only one 
instance and provides 
global access to it

There is a caveat with Java. If you choose to make
the constructor protected (this would be useful if you
wanted a singleton base class for multiple applications
of the singleton pattern, and is actually the ‘official’
solution) you have to be careful.

Protected members are accessible to the class, any sub-
classes, and all classes in the same package. Therefore,
any class in the same package as your base class will
be able to instantiate Singleton objects at will, using
the new keyword!

Additionally, we don’t want a crafty user to subclass
our singleton and implement Cloneable on their ver-
sion. How could you ensure this doesn’t happen?
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10.0.10 The Proxy Pattern

Proxy

Abstract problem: How do we have 
incomplete objects in memory?

Example problem: In a sales program, we 
might have a Customer object that holds all 
the customer info. Often we just need the 
name and address. How do we avoid 
loading in all the details into memory?

Proxy in General

 The proxy pattern allows 
us to have surrogates or 
placeholders for actual 
objects 

Actually the Proxy pattern is often broken down
into three possible intents, called Virtual Proxy,
Remote Proxy, and Protection Proxy.

All three are based on the same general idea: we can
have a placeholder class that has the same interface as
another class, but actually acts as a pass through for
some reason.

In the example here we need a virtual proxy, which
stores some details locally, and passes the rest to the
real object (which may need to be loaded from disk or
something).

A protection proxy is essentially the same, but the
intent is not to save memory so much as protect sensi-
tive information. Perhaps our Customer class consists
only of a name and a credit card number, the latter
of which is clearly sensitive data. We ought to only
have the credit card number in memory when we need
it. A protection proxy would store the name locally,
but override the getCreditCardNumber() method such
that it only loads the information on-demand (possibly

with an extra authentication requirement).

A remote proxy is used when we want the same object
on multiple systems. E.g. Our sales system might
have four or five back-end servers to spread the load
of incoming account requests at any moment. Rather
than copy all of the data to each machine, we might use
proxy objects that simply pass through any requests
to the ‘head’ server. Obviously, just doing this doesn’t
spread the load so we also have our proxy objects store
anything that they get (this is caching).
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10.0.11 The Observer Pattern

Observer

Abstract problem:  When an object 
changes state, how can any 
dependent objects know?

Example problem: How can we write 
phone apps that react to accelerator 
events?

This pattern is used regularly, but is particularly useful
for event-based programs. The process is analogous to
a magazine subscription: you subscribe with the pub-
lisher in order to receive publish events (magazines)
as soon as they are available. In design patterns par-
lance, you are an observer of the publisher, who is the
subject. It should be clear that this is also a very im-
portant pattern for the various proxy implementations
if the source information might change during use.

In an Android smartphone, the system provides a sub-
ject in the form of a SensorManager object, which is
actually a singleton (only one manager at any time).
So we get it by calling:

SensorManager sManager = (SensorManager)

getSystemService(SENSOR_SERVICE);

We then register with it with a line like:

sManager.registerListener(this,

sManager.getDefaultSensor(

Sensor.TYPE_ACCELEROMETER),

SensorManager.SENSOR_DELAY_NORMAL);

Our class must implement SensorEventListener, which
forces us to specify a onSensorEvent() method. When-
ever the system gets a new accelerometer reading, it
cycles over all the objects that have registered with it,
feeding them the new reading.

Observer in General

 The observer pattern allows an object to have multiple 
dependents and propagates updates to the dependents 
automatically.
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10.1 Summary

From the original Design Patterns book:

Decorator Attach additional responsibilities to an ob-
ject dynamically. Decorators provide flexible al-
ternatives to subclassing for extending function-
ality.

State Allow an object to alter its behaviour when its
internal state changes.

Strategy Define a family of algorithms, encapsulate
each one, and make them interchangeable. Strat-
egy lets the algorithm vary independently from
clients that use it.

Composite Compose objects into tree structures to
represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions
of objects uniformly.

Singleton Ensure a class only has one instance, and
provide a global point of access to it.

Proxy Provide a surrogate or placeholder for another
object to control access to it.

Observer Define a one-to-many dependency between
objects so that when one object changes state, all
its dependents are notified and updated accord-
ingly.

10.1.1 Classifying Patterns

Often patterns are classified according to what their
intent is or what they achieve. The original book de-
fined three classes:

Creational Patterns . Patterns concerned with
the creation of objects (e.g. Singleton,
Abstract Factory).

Structural Patterns . Patterns concerned with the
composition of classes or objects (e.g. Composite,
Decorator, Proxy).

Behavioural Patterns . Patterns concerned with
how classes or objects interact and distribute re-
sponsibility (e.g. Observer, State, Strategy).

10.1.2 Other Patterns

You’ve now met eight Design Patterns. There are
plenty more (23 in the original book), but this course
will not cover them. What has been presented here
should be sufficient to:

• Demonstrate that object-oriented programming is
powerful.

• Provide you with (the beginnings of) a vocabulary
to describe your solutions.

• Make you look critically at your code and your
software architectures.

• Entice you to read further to improve your pro-
gramming.

Of course, you probably won’t get it right first time (if
there even is a ‘right’). You’ll probably end up refac-
toring your code as new situations arise. However, if
a Design Pattern is appropriate, you should probably
use it.

10.1.3 Performance

Note that all of the examples here have concentrated
on structuring code to be more readable and maintain-
able, and to incorporate constraints structurally where
possible. At no point have we discussed whether the
solutions perform better. Many of the solutions exploit
runtime polymorphic behaviour, for example, and that
carries with it certain overheads.

This is another reason why you can’t apply Design Pat-
terns blindly. [This is a good thing since, if it wasn’t
true, programming wouldn’t be interesting, and you
wouldn’t get jobs!].
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