Android Programming

• Android Java
• Basic components
 – Activities
 – Services
 – Sensors
 – Alarms
 – Threads
 – ...

EmotionSense Sensor Library

- Android sensor programming
 - Each sensor API has different methods

- EmotionSense Sensor Library (ES2 Library)
 - Provides an easy way to access sensor data
 - Supports a large number of sensors
 - One-off and continuous sensing models
 - Includes energy efficient sensing modules
Requirements

- If you have an Android Phone, please bring it to the lecture
- Android Phone + USB to micro-USB cable
- Eclipse [link](http://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/junosr2)
- Android SDK [link](http://developer.android.com/sdk/index.html)
- ADT plugin for Eclipse [link](http://developer.android.com/tools/sdk/eclipse-adt.html)
- ES2 Demo Project [link](http://www.cl.cam.ac.uk/~kkr27/es2_demo_project.zip) [Import this to your eclipse]

Documentation:

- [link](http://developer.android.com/training/basics/firstapp/index.html)
- [link](https://docs.google.com/document/d/1TqThJULb-4e6TGb1gdkAaPCfyuXStjJpbnt7a0OZ9OE)
- [link](http://emotionsense.org/)
Example - 1

// Get the instance of the sensor manager
ESSensorManager sm = ESSensorManager.getSensorManager(context);

// Capture data from the microphone sensor
MicrophoneData md = (MicrophoneData) essSensorManager.getDataFromSensor(SensorUtils.SENSOR_TYPE_MICROPHONE);

For Accelerometer, use:
SensorUtils.SENSOR_TYPE_ACCELEROMETER
Example - 2

// Capture data continuously from the microphone sensor
int subscriptionId = esSensorManager.
subscribeToSensorData
(SensorUtils.SENSOR_TYPE_MICROPHONE, listener);

// Implement the listener
class Listener implements SensorDataListener
{
 public void onDataSensed(SensorData sensorData)
 {

 }
}
Programming exercise 1

Detect whether the user is moving or stationary

• Implement an activity and add a button to the UI

• On clicking the button, the program should detect whether the user is moving or not
Detect whether the user is moving or stationary

• Classification technique:
 – Capture data from the accelerometer sensor for 4 seconds
 (Use sensorManager.setSensorConfig() to set
 SENSE_WINDOW_LENGTH_MILLIS to 4 seconds)
 – Calculate the magnitude of acceleration for each of the vectors;
 \[m_i = \sqrt{x_i^2 + y_i^2 + z_i^2} \]
 – Calculate the Std. Deviation of the magnitudes
 – If (Std. Deviation > threshold) then the user is moving
Programming exercise 2

Detect the presence of environmental noise

- Capture data for about 3 seconds from the Microphone sensor
- Calculate the average of the amplitude values
- If (average > threshold) then status = ‘noise’
Programming exercise 3

Detect the presence of environmental noise on detecting the ‘isNear’ event on the proximity sensor

• Subscribe to the proximity sensor using ESSensorManager

• In the onDataChange() method of the listener, check if isNear() is true and then invoke the noise detection procedure.
Questions

Contact neal.lathia@cl.cam.ac.uk or kiran.rachuri@cl.cam.ac.uk