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Interactive Formal Verification consists of twelve lectures and four prac-
tical sessions. The handouts for the first two practical sessions will not be
assessed. You may find that these handouts contain more work than you can
complete in an hour. You are not required to complete these exercises; they
are merely intended to be instructive. Many more exercises can be found
at http://isabelle.in.tum.de/exercises/. Note that many of these on-line ex-
amples are very simple, the assessed exercises are considerably harder. You
are strongly encouraged to attempt a variety of exercises, and perhaps to
develop your own.

The handouts for the last two practical sessions will be assessed to deter-
mine your final mark (50% each). For each assessed exercise, please complete
the indicated tasks and write a brief document explaining your work. You
may prepare these documents using Isabelle’s theory presentation facility,
but this is not required. A very simple way to print a theory file legibly is to
use the Proof General command Isabelle > Commands > Display draft.
You can combine the resulting output with a document produced using your
favourite word processing package. Please ensure that your specifications are
correct (because proofs based on incorrect specifications could be worthless)
and that your Isabelle theory actually runs.

Each assessed exercise is worth 100 marks. Of those, 50 marks are for
completing the tasks, 25 marks are for the write-up and the final 25 marks
are for demonstrating a wide knowledge of Isabelle primitives and tech-
niques. To earn these final 25 marks, you may need to vary your proof style
and perhaps to expand some brief apply-style proofs into structured proofs;
the point is not to make your proofs longer (other things being equal, brevity
is a virtue) but to show that you have mastered a variety of Isabelle skills.
You could even demonstrate techniques not covered in the course.

To get full credit, your write-up must be clear. It can be brief, 2–4
pages. It should explain your proofs, preferably displaying these proofs if
they are not too long. It could perhaps outline the strategic decisions that
affected the shape of your proof and include notes about your experience in
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completing it.
Isabelle theory files for all four sessions can be downloaded from the

course materials website. These files contain necessary Isabelle declarations
that you can use as a basis for your own work.

You must work on these assignments as an individual; collaboration is
not permitted. Here are the deadlines:

• 1st exercise: Tuesday, 19th February 2013

• 2nd exercise: Thursday, 7th March 2013

Please deliver a printed copy of each completed exercise to student admin-
istration by 12 noon on the given date, and also send the corresponding
theory file to lp15@cam.ac.uk.
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1 Replace, Reverse and Delete

Define a function replace, such that replace x y zs yields zs with every
occurrence of x replaced by y.

consts replace :: "’a ⇒ ’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems. You may
have to prove some lemmas first.

theorem "rev(replace x y zs) = replace x y (rev zs)"
theorem "replace x y (replace u v zs) = replace u v (replace x y zs)"
theorem "replace y z (replace x y zs) = replace x z zs"

Define two functions for removing elements from a list: del1 x xs deletes
the first occurrence (from the left) of x in xs, delall x xs all of them.

consts del1 :: "’a ⇒ ’a list ⇒ ’a list"
delall :: "’a ⇒ ’a list ⇒ ’a list"

Prove or disprove (by counterexample) the following theorems.

theorem "del1 x (delall x xs) = delall x xs"
theorem "delall x (delall x xs) = delall x xs"
theorem "delall x (del1 x xs) = delall x xs"
theorem "del1 x (del1 y zs) = del1 y (del1 x zs)"
theorem "delall x (del1 y zs) = del1 y (delall x zs)"
theorem "delall x (delall y zs) = delall y (delall x zs)"
theorem "del1 y (replace x y xs) = del1 x xs"
theorem "delall y (replace x y xs) = delall x xs"
theorem "replace x y (delall x zs) = delall x zs"
theorem "replace x y (delall z zs) = delall z (replace x y zs)"
theorem "rev(del1 x xs) = del1 x (rev xs)"
theorem "rev(delall x xs) = delall x (rev xs)"
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2 Power, Sum

2.1 Power

Define a primitive recursive function pow x n that computes xn on natural
numbers.

consts
pow :: "nat => nat => nat"

Prove the well known equation xm·n = (xm)n:

theorem pow_mult: "pow x (m * n) = pow (pow x m) n"

Hint: prove a suitable lemma first. If you need to appeal to associativity
and commutativity of multiplication: the corresponding simplification rules
are named mult_ac.

2.2 Summation

Define a (primitive recursive) function sum ns that sums a list of natural
numbers: sum[n1, . . . , nk] = n1 + · · ·+ nk.

consts
sum :: "nat list => nat"

Show that sum is compatible with rev. You may need a lemma.

theorem sum_rev: "sum (rev ns) = sum ns"

Define a function Sum f k that sums f from 0 up to k − 1: Sum f k =
f 0 + · · ·+ f(k − 1).

consts
Sum :: "(nat => nat) => nat => nat"

Show the following equations for the pointwise summation of functions. De-
termine first what the expression whatever should be.

theorem "Sum (%i. f i + g i) k = Sum f k + Sum g k"
theorem "Sum f (k + l) = Sum f k + Sum whatever l"

What is the relationship between sum and Sum? Prove the following equation,
suitably instantiated.

theorem "Sum f k = sum whatever"

Hint: familiarize yourself with the predefined functions map and [i..<j] on
lists in theory List.
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3 Binary Search Trees

3.1 Preliminaries

We begin by declaring a binary tree with labelled nodes.

datatype tree = Lf | Br int tree tree

A binary search tree is a binary tree with an ordering constraint: at every
node, the label is greater than every label in the left subtree, and smaller
than every label in the right subtree (both inequalities strict).

The update operation for a binary search tree can be declared as follows.
Note the use of the ordering constraint to recursively update the correct
subtree.

fun update :: "tree => int => tree"
where
"update Lf v = Br v Lf Lf"

| "update (Br w t1 t2) v =
(if v<w then Br w (update t1 v) t2
else
if w<v then Br w t1 (update t2 v)
else Br v t1 t2)"

Task 1 Define an Isabelle function lookup of type tree ⇒ int ⇒ bool, so
as to return True if a given label occurs in a binary search tree. It should
take advantage of the ordering constraint analogously to update. [4 marks]

Task 2 Define an Isabelle function labels of type tree ⇒ int set, to re-
turn the set of labels in a binary tree. Also define an Isabelle function
ordered of type tree ⇒ bool, specifying the ordering constraint for binary
search trees. [6 marks]

Task 3 Prove the following theorems. [15 marks]

lemma labels_update: "labels (update t v) = {v} ∪ labels t"
lemma ordered_update: "ordered (update t v) ←→ ordered t"
lemma ordered_lookup: "ordered t =⇒ lookup t v ←→ v ∈ labels t"
lemma lookup_update:

"ordered t =⇒ lookup (update t v) w = (v=w ∨ lookup t w)"
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3.2 Additional Functions on Trees

The remainder of this exercise involves the function gax:

fun gax :: "tree => tree => tree"
where
"gax Lf t = t"

| "gax (Br v t1 t2) t = gax t1 (gax t2 (update t v))"

Task 4 Prove the following theorems, first replacing the function f in the
first one by something more appropriate. Thus explain what gax actually
does. [10 marks]

lemma labels_gax: "labels (gax t1 t2) = f (labels t1, labels t2)"
lemma ordered_gax: "ordered (gax t1 t2) = ordered t2"

Task 5 Define an Isabelle function delete of type tree ⇒ int ⇒ tree, to
delete a label from a binary tree. ( Hint: you may find the function gax

helpful.) Then, prove the following theorems. [15 marks]

lemma labels_delete:
"ordered t =⇒ labels (delete t v) = labels t - {v}"

lemma ordered_delete: "ordered t =⇒ ordered (delete t v)"

Note: If your solution generalises the type of trees to be polymorphic, rather
than having integer labels, then you will gain 5–10 marks in the category of
“expertise”. This generalisation requires the use of an appropriate axiomatic
type class.
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4 Finite State Machines

A nondeterministic finite state machine, as formalised below, has a set of
initial states (where the machine may start execution), a set of final states
(indicating acceptance of a string) and finally a next state relation.
Type ’a denotes the set of states, while type ’b represents the alphabet.
The next state relation represents labelled transitions, s c−→ s′. It holds
whenever it is possible to go from state s to state s′ reading the character c.

record (’a,’b) fsm = init :: "’a set"
final :: "’a set"
nxt :: "’a => ’b => ’a => bool"

The definition above uses Isabelle records, which have not been covered
in the course. As used here, they are very simple. A field of a record r

is designated using the field name as a function, as in init r. Records are
further described in the Tutorial (section 8.2), but it is permissible to replace
the record by a 3-tuple in this exercise.

Task 1 Define an Isabelle function reaches of type (’a, ’b) fsm ⇒ ’a ⇒
’b list ⇒ ’a ⇒ bool generalising the next state relation to the that of
reachability, s l−→

∗
s′, where l is a list of characters. Therefore reaches

should satisfy

• s []−→
∗
s (with the empty list, a state s is reachable from itself), and

• s (c#l)−−−−→
∗
s′ if s c−→ s′′ and s′′ l−→

∗
s′ for som intermediate state s′′.

(Note that a string of characters has type ’b.) [5 marks]

Task 2 Prove the following theorem. [5 marks]

lemma reaches_append_iff:
"reaches fsm s (xs@ys) s’ ←→

(∃ s’’. reaches fsm s xs s’’ ∧ reaches fsm s’’ ys s’)"

A finite state machine accepts a given string provided some final state is
reachable from some initial state via that string.

definition accepts :: "(’a,’b) fsm => ’b list => bool" where
"accepts fsm xs ==
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∃ s s’. reaches fsm s xs s’ ∧ s ∈ init fsm ∧ s’ ∈ final fsm"

For example, we can define a trivial finite state machine that does not accept
any strings. The proof of the theorem is trivial. This example also illustrates
the syntax for writing record expressions. Note the special brackets used to
enclose the record fields.
definition Null where
"Null = (|init = {}, final = {}, nxt = λst x st’. False|)"

lemma accepts_empty: "~ accepts Null l"

Task 3 Prove the following theorem, for a suitable definition of the function
SingStr. This should create a machine that accepts only a string consisting
of the given single character. [10 marks]

lemma accepts_singstr: "accepts (SingStr a) l ←→ l = [a]"

Task 4 Prove the following theorem, for a suitable definition of the function
Reverse. This should create a machine that reverses the direction of all
transitions in a given machine. (You may find it helpful to prove a lemma
relating the functions reaches and Reverse.) [12 marks]

lemma accepts_rev: "accepts fsm l =⇒ accepts (Reverse fsm) (rev l)"

Task 5 Prove the following theorem, for a suitable definition of the function
Times. This should create a machine that runs to other given machines in
parallel. Each state of this machine should be an ordered pair. The point
of this construction is to define the intersection of two languages. (You will
probably need Isabelle’s operator for forming the Cartesian product of two
sets, written A × B. .) [18 marks]

lemma accepts_Times_iff:
"accepts (Times fsm1 fsm2) xs ←→
accepts fsm1 xs ∧ accepts fsm2 xs"

Remark : This material represents part of a development of the theory of
regular languages. In fact it needs much work before it can be useful in that
guise. A regular language is normally defined to be any language accepted
by some finite state machine. Unfortunately, with our definitions, the set
of states of a machine affects its type. So the relevant definition cannot be
expressed. To develop this material further requires a different treatment of
machine states.
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