
1

Topics in Logic and Complexity

Lecture 1

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

2

What is This Course About?

Complexity Theory is the study of what makes some algorithmic

problems inherently difficult to solve.

Difficult in the sense that there is no efficient algorithm.

Mathematical Logic is the study of formal mathematical reasoning.

It gives a mathematical account of meta-mathematical

notions such as structure, language and proof.

In this course we will see how logic can be used to study complexity

theory. In particular, we will look at how complexity relates to

definability.

3

Computational Complexity

Complexity is usually defined in terms of running time or space

asymptotically required by an algorithm. E.g.

• Merge Sort runs in time O(n logn).

• Any sorting algorithm that can sort an arbitrary list of n

numbers requires time Ω(n logn).

Complexity theory is concerned with the hardness of problems

rather than specific algorithms.

We will mostly be concerned with broad classification of

complexity: logarithmic vs. polynomial vs. exponential.

4

Graph Properties

For simplicity, we often focus on decision problems.

As an example, consider the following three decision problems on

graphs.

1. Given a graph G = (V,E) does it contain a triangle?

2. Given a directed graph G = (V,E) and two of its vertices

s, t ∈ V , does G contain a path from s to t?

3. Given a graph G = (V,E) is it 3-colourable? That is,

is there a function χ : V → {1, 2, 3} so that whenever

(u, v) ∈ E, χ(u) 6= χ(v).

5

Graph Properties

1. Checking if G contains a triangle can be solved in polynomial

time and logarithmic space.

2. Checking if G contains a path from s to t can be done in

polynomial time.

Can it be done in logarithmic space?

Unlikely. It is NL-complete.

3. Checking if G is 3-colourable can be done in exponential time

and polynomial space.

Can it be done in polynomial time?

Unlikely. It is NP-complete.

6

Logical Definability

In what kind of formal language can these decision problems be

specified or defined?

The graph G = (V,E) contains a triangle.

∃x ∈ V ∃y ∈ V ∃z ∈ V (x 6= y∧y 6= z∧x 6= z∧E(x, y)∧E(x, z)∧E(y, z))

The other two properties are provably not definable with only

first-order quantification over vertices.

7

Second-Order Quantifiers

3-Colourability and reachability can be defined with quantification

over sets of vertices.

∃R ⊆ V ∃B ⊆ V ∃G ⊆ V

∀x(Rx ∨Bx ∨Gx)∧

∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))

∀S ⊆ V (s ∈ S ∧ ∀x∀y((x ∈ S ∧ E(x, y))→ y ∈ S)→ t ∈ S)

8

Course Outline

This course is concerned with the questions of (1) how definability

relates to computational complexity and (2) how to analyse

definability.

1. Complexity Theory—a review of the major complexity classes

and their interrelationships (3L).

2. First-order and second-order logic—their expressive power and

computational complexity (3L).

3. Lower bounds on expressive power—the use of games and

locality (3L).

4. Fixed-point logics and descriptive complexity (3L).

5. Monadic Second-Order Logic and Automata (4L).

9

Useful Information

Some useful books:

• C.H. Papadimitriou. Computational Complexity.

Addison-Wesley. 1994.

• S. Arora and B. Barak. Computational Complexity. CUP.

2009.

• H.-D. Ebbinghaus and J. Flum. Finite Model Theory (2nd ed.)

1999.

• N. Immerman. Descriptive Complexity. Springer. 1999.

• L. Libkin. Elements of Finite Model Theory. Springer. 2004.

• E. Grädel et al. Finite Model Theory and its Applications.

Springer. 2007.

Course website: http://www.cl.cam.ac.uk/teaching/1213/L15/

10

Decision Problems and Algorithms

Formally, a decision problem is a set of strings L ⊆ Σ∗ over a finite

alphabet Σ.

The problem is decidable if there is an algorithm which given any

input x ∈ Σ∗ will determine whether x ∈ L or not.

The notion of an algorithm is formally defined by a machine model:

A Turing Machine; Random Access Machine or even a Java

program.

The choice of machine model doesn’t affect what is or is not

decidable.

Similarly, we say a function f : Σ∗ → ∆∗ is computable if there is

an algorithm which takes input x ∈ Σ∗ and gives output f(x).

11

Turing Machines

For our purposes, a Turing Machine consists of:

• K — a finite set of states;

• Σ — a finite set of symbols, including ⊔.

• s ∈ K — an initial state;

• δ : (K × Σ)→ (K ∪ {a, r})× Σ× {L,R, S}

A transition function that specifies, for each state and symbol a

next state (or accept a or reject r), a symbol to overwrite the

current symbol, and a direction for the tape head to move (L –

left, R – right, or S - stationary)

12

Configurations

A complete description of the configuration of a machine can be

given if we know what state it is in, what are the contents of its

tape, and what is the position of its head. This can be summed up

in a simple triple:

Definition

A configuration is a triple (q, w, u), where q ∈ K and w, u ∈ Σ⋆

The intuition is that (q, w, u) represents a machine in state q with

the string wu on its tape, and the head pointing at the last symbol

in w.

The configuration of a machine completely determines the future

behaviour of the machine.

13

Computations

Given a machine M = (K,Σ, s, δ) we say that a configuration

(q, w, u) yields in one step (q′, w′, u′), written

(q, w, u)→M (q′, w′, u′)

if

• w = va ;

• δ(q, a) = (q′, b,D); and

• either D = L and w′ = v u′ = bu

or D = S and w′ = vb and u′ = u

or D = R and w′ = vbc and u′ = x, where u = cx. If u is

empty, then w′ = vb⊔ and u′ is empty.

14

Computations

The relation →⋆
M is the reflexive and transitive closure of →M .

A sequence of configurations c1, . . . , cn, where for each i,

ci →M ci+1, is called a computation of M .

The language L(M) ⊆ Σ⋆ accepted by the machine M is the set of

strings

{x | (s, ⊲, x)→⋆
M (acc, w, u) for some w and u}

A machine M is said to halt on input x if for some w and u, either

(s, ⊲, x)→⋆
M (acc, w, u) or (s, ⊲, x)→⋆

M (rej, w, u)

15

Complexity

For any function f : IN→ IN, we say that a language L is in

TIME(f(n)) if there is a machine M = (K,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f(n)).

Similarly, we define SPACE(f(n)) to be the languages accepted by a

machine which uses O(f(n)) tape cells on inputs of length n.

In defining space complexity, we assume a machine M , which has a

read-only input tape, and a separate work tape. We only count

cells on the work tape towards the complexity.

16

Nondeterminism

If, in the definition of a Turing machine, we relax the condition on

δ being a function and instead allow an arbitrary relation, we

obtain a nondeterministic Turing machine.

δ ⊆ (K × Σ)× (K ∪ {a, r} × Σ× {R,L, S}).

The yields relation →M is also no longer functional.

We still define the language accepted by M by:

L(M) = {x | (s, ⊲, x)→⋆
M (acc, w, u) for some w and u}

though, for some x, there may be computations leading to

accepting as well as rejecting states.

17

Nondeterministic Complexity

For any function f : IN→ IN, we say that a language L is in

NTIME(f(n)) if there is a nondeterministic machine

M = (K,Σ, s, δ), such that:

• L = L(M); and

• The running time of M is O(f(n)).

The last statement means that for each x ∈ L(M), there is a

computation of M that accepts x and whose length is bounded by

O(f(|x|)).

Similarly, we define NSPACE(f(n)) to be the languages accepted by

a nondeterminstic machine which uses O(f(n)) tape cells on inputs

of length n.

As before, in reckoning space complexity, we only count work space.

18

Computation Trees

With a nondeterministic machine, each configuration gives rise to a

tree of successive configurations.

(s, ⊲, x)

(q0, u0, w0)(q1, u1, w1)(q2, u2, w2)

(q00, u00, w00)

(q11, u11, w11)
.
.
.

.

.

.

(rej, u2, w2)

(acc, . . .)

(q10, u10, w10)

19

Complexity Classes

A complexity class is a collection of languages determined by three

things:

• A model of computation (such as a deterministic Turing

machine, or a nondeterministic TM, or a parallel Random

Access Machine).

• A resource (such as time, space or number of processors).

• A set of bounds. This is a set of functions that are used to

bound the amount of resource we can use.

20

Polynomial Bounds

By making the bounds broad enough, we can make our definitions

fairly independent of the model of computation.

The collection of languages recognised in polynomial time is

the same whether we consider Turing machines, register

machines, or any other deterministic model of computation.

The collection of languages recognised in linear time, on

the other hand, is different on a one-tape and a two-tape

Turing machine.

We can say that being recognisable in polynomial time is a

property of the language, while being recognisable in linear time is

sensitive to the model of computation.

21

Reading List for this Part

1. Papadimitriou. Chapters 1 and 2.

2. Arora and Barak. Chapter 1.

3. Grädel et al. Chapter 1 (Weinstein).

22

Topics in Logic and Complexity

Part 2

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

23

Polynomial Time Computation

P =
∞⋃

k=1

TIME(nk)

The class of languages decidable in polynomial time.

The complexity class P plays an important role in complexity

theory.

• It is robust, as explained.

• It serves as our formal definition of what is feasibly computable

24

Nondeterministic Polynomial Time

NP =
∞⋃

k=1

NTIME(nk)

That is, NP is the class of languages accepted by a

nondeterministic machine running in polynomial time.

Since a deterministic machine is just a nondeterministic machine in

which the transition relation is functional, P ⊆ NP.

25

Succinct Certificates

The complexity class NP can be characterised as the collection of

languages of the form:

L = {x | ∃y R(x, y)}

Where R is a relation on strings satisfying two key conditions

1. R is decidable in polynomial time.

2. R is polynomially balanced. That is, there is a polynomial p

such that if R(x, y) and the length of x is n, then the length of

y is no more than p(n).

26

Equivalence of Definitions

If L = {x | ∃y R(x, y)} we can define a nondeterministic machine

M that accepts L.

The machine first uses nondeterministic branching to guess a value

for y, and then checks whether R(x, y) holds.

In the other direction, suppose we are given a nondeterministic

machine M which runs in time p(n).

Suppose that for each (q, σ) ∈ K × Σ (i.e. each state, symbol pair)

there are at most k elements in δ(q, σ).

27

Equivalence of Definitions

For y a string over the alphabet {1, . . . , k}, we define the relation

R(x, y) by:

• |y| ≤ p(|x|); and

• the computation of M on input x which, at step i takes the

“y[i]th transition” is an accepting computation.

Then, L(M) = {x | ∃y R(x, y)}

28

Space Complexity Classes

L = SPACE(logn)

The class of languages decidable in logarithmic space.

NL = NSPACE(logn)

The class of languages decidable by a nondeterministic machine in

logarithmic space.

PSPACE =
⋃∞

k=1 SPACE(nk)

The class of languages decidable in polynomial space.

NPSPACE =
⋃∞

k=1 NSPACE(nk)

29

Inclusions between Classes

We have the following inclusions:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP

where EXP =
⋃∞

k=1 TIME(2nk

)

Of these, the following are direct from the definitions:

L ⊆ NL

P ⊆ NP

PSPACE ⊆ NPSPACE

30

NP ⊆ PSPACE

To simulate a nondeterministic machine M running in time t(n) by

a deterministic one, it suffices to carry out a depth-first search of

the computation tree.

We keep a counter to cut off branches that exceed t(n) steps.

The space required is:

• a counter to count up to t(n); and

• a stack of configurations, each of size at most O(t(n)).

The depth of the stack is at most t(n).

Thus, if t is a polynomial, the total space required is polynomial.

31

NL ⊆ P

Given a nondeterministic machine M that works with work space

bounded by s(n) and an input x of length n, there is some constant

c such that

the total number of possible configurations of M within

space bounds s(n) is bounded by n · cs(n).

Define the configuration graph of M,x to be the graph whose nodes

are the possible configurations, and there is an edge from i to j if,

and only if, i→M j.

32

Reachability in the Configuration Graph

M accepts x if, and only if, some accepting configuration is

reachable from the starting configuration in the configuration graph

of M,x.

Using an O(n2) algorithm for Reachability, we get that M can be

simulated by a deterministic machine operating in time

c′(ncs(n))2 ∼ c′c2(log n+s(n)) ∼ d(log n+s(n))

for some constant d.

When s(n) = O(logn), this is polynomial and so NL ⊆ P.

When s(n) is polynomial this is exponential in n and so

NPSPACE ⊆ EXP.

33

Nondeterministic Space Classes

If Reachability were solvable by a deterministic machine with

logarithmic space, then

L = NL.

In fact, Reachability is solvable by a deterministic machine with

space O((logn)2).

This implies

NSPACE(s(n)) ⊆ SPACE((s(n)2)).

In particular PSPACE = NPSPACE.

34

Reachability in O((log n)2)

O((logn)2) space Reachability algorithm:

Path(a, b, i)

if i = 1 and (a, b) is not an edge reject

else if (a, b) is an edge or a = b accept

else, for each node x, check:

1. is there a path a− x of length i/2; and

2. is there a path x− b of length i/2?

if such an x is found, then accept, else reject.

The maximum depth of recursion is logn, and the number of bits

of information kept at each stage is 3 logn.

35

Inclusions between Classes

This leaves us with the following:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXP

Hierarchy Theorems proved by diagonalization can show that:

L 6= PSPACE NL 6= NPSPACE P 6= EXP

For other inclusions above, it remains an open question whether

they are strict.

36

Complement Classes

If we interchange accepting and rejecting states in a deterministic

machine that accepts the language L, we get one that accepts L.

If a language L ∈ P, then also L ∈ P.

Complexity classes defined in terms of nondeterministic machine

models are not necessarily closed under complementation of

languages.

Define,

co-NP – the languages whose complements are in NP.

co-NL – the languages whose complements are in NL.

37

Relationships

P ⊆ NP ∩ co-NP and any of the situations is consistent with our

present state of knowledge:

• P = NP = co-NP

• P = NP ∩ co-NP 6= NP 6= co-NP

• P 6= NP ∩ co-NP = NP = co-NP

• P 6= NP ∩ co-NP 6= NP 6= co-NP

It follows from the fact that PSPACE = NPSPACE that NPSPACE is

closed under complementation.

Also, Immerman and Szelepcsényi showed that NL = co-NL.

38

Reductions

Given two languages L1 ⊆ Σ⋆
1, and L2 ⊆ Σ⋆

2,

a reduction of L1 to L2 is a computable function

f : Σ⋆
1 → Σ⋆

2

such that for every string x ∈ Σ⋆
1,

f(x) ∈ L2 if, and only if, x ∈ L1

39

Resource Bounded Reductions

If f is computable by a polynomial time algorithm, we say that L1

is polynomial time reducible to L2.

L1 ≤P L2

If f is also computable in SPACE(logn), we write

L1 ≤L L2

40

Reductions 2

If L1 ≤ L2 we understand that L1 is no more difficult to solve than

L2.

That is to say, for any of the complexity classes C we consider,

If L1 ≤ L2 and L2 ∈ C, then L1 ∈ C

We can get an algorithm to decide L1 by first computing f , and

then using the C-algorithm for L2.

Provided that C is closed under such reductions.

41

Completeness

The usefulness of reductions is that they allow us to establish the

relative complexity of problems, even when we cannot prove

absolute lower bounds.

Cook (1972) first showed that there are problems in NP that are

maximally difficult.

For any complexity class C, a language L is said to be C-hard if for

every language A ∈ C, A ≤ L.

A language L is C-complete if it is in C and it is C-hard.

42

Complete Problems

Examples of complete problems for various complexity classes.

NL

Reachability

P

Game, Circuit Value Problem

NP Satisfiability of Boolean Formulas, Graph 3-Colourability,

Hamiltonian Cycle

co-NP

Validity of Boolean Formulas, Non 3-colourability

PSPACE

Geography, The game of HEX

43

Reading List for this Part

1. Papadimitriou. Chapters 7, 8 and 16.

2. Arora and Barak. Chapters 2 and 4.

3. Immerman Chapter 2.

44

Topics in Logic and Complexity

Part 3

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

45

P-complete Problems

Game

Input: A directed graph G = (V,E) with a partition

V = V1 ∪ V2 of the vertices and two distinguished vertices

s, t ∈ V .

Decide: whether Player 1 can force a token from s to t in

the game where when the token is on v ∈ V1, Player 1

moves it along an edge leaving v and when it is on v ∈ V2,

Player 2 moves it along an edge leaving v.

46

Circuit Value Problem

A Circuit is a directed acyclic graph G = (V,E) where each node

has in-degree 0, 1 or 2 and there is exactly one vertex t with no

outgoing edges, along with a labelling which assigns:

• to each node of indegree 0 a value of 0 or 1

• to each node of indegree 1 a label ¬

• to each node of indegree 2 a label ∧ or ∨

The problem CVP is, given a circuit, decide if the target node t

evaluates to 1.

47

NP-complete Problems

SAT

Input: A Boolean formula φ

Decide: if there is an assignment of truth values to the

variables of φ that makes φ true.

Hamiltonicity

Input: A graph G = (V,E)

Decide: if there is a cycle in G that visits every vertex

exactly once.

48

co-NP-complete Problems

VAL

Input: A Boolean formula φ

Decide: if every assignment of truth values to the variables

of φ makes φ true.

Non-3-colourability

Input: A graph G = (V,E)

Decide: if there is no function χ : V → {1, 2, 3} such that

the two endpoints of every edge are differently coloured.

49

PSPACE-complete Problems

Geography is very much like Game but now players are not allowed

to visit a vertex that has been previously visitied.

HEX is a game played by two players on a graph G = (V,E) with a

source and target s, t ∈ V .

The two players take turns selecting vertices from V—neither

player can choose a vertex that has been previously selected.

Player 1 wins if, at any point, the vertices she has selected include

a path from s to t. Player 2 wins if all vertices have been selected

and no such path is formed.

The problem is to decide which player has a winning strategy.

50

Descriptive Complexity

Descriptive Complexity provides an alternative perspective on

Computational Complexity.

Computational Complexity

• Measure use of resources (space, time, etc.) on a machine

model of computation;

• Complexity of a language—i.e. a set of strings.

Descriptive Complexity

• Complexity of a class of structures—e.g. a collection of graphs.

• Measure the complexity of describing the collection in a formal

logic, using resources such as variables, quantifiers,

higher-order operators, etc.

There is a fascinating interplay between the views.

51

Signature and Structure

In general a signature (or vocabulary) σ is a finite sequence of

relation, function and constant symbols:

σ = (R1, . . . , Rm, f1, . . . , fn, c1, . . . , cp)

where, associated with each relation and function symbol is an

arity.

52

Structure

A structure A over the signature σ is a tuple:

A = (A,RA

1 , . . . , R
A

m, f
A

1 , . . . , f
A

n , c
A

1 , . . . , c
A

n),

where,

• A is a non-empty set, the universe of the strucure A,

• each RA

i is a relation over A of the appropriate arity.

• each fA

i is a function over A of the appropriate arity.

• each cA

i is an element of A.

53

First-order Logic

Formulas of first-order logic are formed from the signature σ and

an infinite collection X of variables as follows.

terms – c, x, f(t1, . . . , ta)

Formulas are defined by induction:

• atomic formulas – R(t1, . . . , ta), t1 = t2

• Boolean operations – φ ∧ ψ, φ ∨ ψ, ¬φ

• first-order quantifiers – ∃xφ, ∀xφ

54

Queries

A formula φ with free variables among x1, . . . , xn defines a map Q

from structures to relations:

Q(A) = {a | A |= φ[a]}.

Any such map Q which associates to every structure A a (n-ary)

relation on A, and is isomorphism invariant, is called a (n-ary)

query.

Q is isomorphism invariant if, whenever f : A→ B is an

isomorphism between A and B, it is also an isomorphism between

(A,Q(A)) and (B,Q(B)).

If n = 0, we can regard the query as a map from structures to

{0, 1}—a Boolean query.

55

Graphs

For example, take the signature (E), where E is a binary relation

symbol.

Finite structures (V,E) of this signature are directed graphs.

Moreover, the class of such finite structures satisfying the sentence

∀x¬Exx ∧ ∀x∀y(Exy → Eyx)

can be identified with the class of (loop-free, undirected) graphs.

56

Complexity

For a first-order sentence φ, we ask what is the computational

complexity of the problem:

Input: a structure A

Decide: if A |= φ

In other words, how complex can the collection of finite models of φ

be?

In order to talk of the complexity of a class of finite structures, we

need to fix some way of representing finite structures as strings.

57

Representing Structures as Strings

We use an alphabet Σ = {0, 1,#,−}.

For a structure A = (A,R1, . . . , Rm, f1, . . . , fl), fix a linear order <

on A = {a1, . . . , an}.

Ri (of arity k) is encoded by a string [Ri]< of 0s and 1s of length

nk.

fi is encoded by a string [fi]< of 0s, 1s and −s of length nk logn.

[A]< = 1 · · · 1
︸ ︷︷ ︸

n

#[R1]<# · · ·#[Rm]<#[f1]<# · · ·#[fl]<

The exact string obtained depends on the choice of order.

58

Näıve Algorithm

The straightforward algorithm proceeds recursively on the

structure of φ:

• Atomic formulas by direct lookup.

• Boolean connectives are easy.

• If φ ≡ ∃xψ then for each a ∈ A check whether

(A, c 7→ a) |= ψ[c/x],

where c is a new constant symbol.

This runs in time O(lnm) and O(m log n) space, where m is the

nesting depth of quantifiers in φ.

Mod(φ) = {A | A |= φ}

is in logarithmic space and polynomial time.

59

Reading List for this Part

1. Papadimitriou. Chapter 8.

2. Libkin Chapter 2.

3. Grädel et al. Sections 2.1–2.4 (Kolaitis).

60

Topics in Logic and Complexity

Part 4

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

61

Complexity of First-Order Logic

The following problem:

FO satisfaction

Input: a structure A and a first-order sentence φ

Decide: if A |= φ

is PSPACE-complete.

It follows from the O(lnm) and O(m logn) space algorithm that the

problem is in PSPACE.

How do we prove completeness?

62

QBF

We define quantified Boolean formulas inductively as follows, from

a set X of propositional variables.

• A propositional constant T or F is a formula

• A propositional variable X ∈ X is a formula

• If φ and ψ are formulas then so are: ¬φ, φ ∧ ψ and φ ∨ ψ

• If φ is a formula and X is a variable then ∃X φ and ∀X φ are

formulas.

Say that an occurrence of a variable X is free in a formula φ if it is

not within the scope of a quantifier of the form ∃X or ∀X .

63

QBF

Given a quantified Boolean formula φ and an assignment of truth

values to its free variables, we can ask whether φ evaluates to true

or false.

In particular, if φ has no free variables, then it is equivalent to

either true or false.

QBF is the following decision problem:

Input: a quantified Boolean formula φ with no free

variables.

Decide: whether φ evaluates to true.

64

Complexity of QBF

Note that a Boolean formula φ without quantifiers and with

variables X1, . . . , Xn is satisfiable if, and only if, the formula

∃X1 · · · ∃Xn φ is true.

Similarly, φ is valid if, and only if, the formula

∀X1 · · · ∀Xn φ is true.

Thus, SAT ≤L QBF and VAL ≤L QBF and so QBF is NP-hard and

co-NP-hard.

In fact, QBF is PSPACE-complete.

65

QBF is in PSPACE

To see that QBF is in PSPACE, consider the algorithm that

maintains a 1-bit register X for each Boolean variable appearing in

the input formula φ and evaluates φ in the natural fashion.

The crucial cases are:

• If φ is ∃X ψ then return T if either (X ← T ; evaluate ψ) or

(X ← F ; evaluate ψ) returns T.

• If φ is ∀X ψ then return T if both (X ← T ; evaluate ψ) and

(X ← F ; evaluate ψ) return T.

66

PSPACE-completeness

To prove that QBF is PSPACE-complete, we want to show:

Given a machine M with a polynomial space bound and an

input x, we can define a quantified Boolean formula φM
x

which evaluates to true if, and only if, M accepts x.

Moreover, φM
x can be computed from x in polynomial time

(or even logarithmic space).

The number of distinct configurations of M on input x is bounded

by 2nk

for some k (n = |x|).

Each configuration can be represented by nk bits.

67

Constructing φM

x

We use tuples A,B of nk Boolean variables each to encode

configurations of M .

Inductively, we define a formula ψi(A,B) which is true if the

configuration coded by B is reachable from that coded by A in at

most 2i steps.

ψ0(A,B) ≡ “A = B′′ ∨ “A→M B′′

ψi+1(A,B) ≡ ∃Z∀X∀Y [(X = A ∧Y = Z) ∨ (X = Z ∧Y = B)

⇒ ψi(X,Y)]

φ ≡ ψnk(A,B) ∧ “A = start′′ ∧ “B = accept′′

68

Reducing QBF to FO satisfaction

We have seen that FO satisfaction is in PSPACE.

To show that it is PSPACE-complete, it suffices to show that

QBF ≤L FO sat.

The reduction maps a quantified Boolean formula φ to a pair

(A, φ∗) where A is a structure with two elements: 0 and 1

interpreting two constants f and t respectively.

φ∗ is obtained from φ by a simple inductive definition.

69

Expressive Power of FO

For any fixed sentence φ of first-order logic, the class of structures

Mod(φ) is in L.

There are computationally easy properties that are not definable in

first-order logic.

• There is no sentence φ of first-order logic such that A |= φ if,

and only if, |A| is even.

• There is no formula φ(E, x, y) that defines the transitive

closure of a binary relation E.

We will see proofs of these facts later on.

70

Second-Order Logic

We extend first-order logic by a set of relational variables.

For each m ∈ N there is an infinite collection of variables

Vm = {V m
1 , V m

2 , . . .} of arity m.

Second-order logic extends first-order logic by allowing second-order

quantifiers

∃X φ for X ∈ Vm

A structure A satisfies ∃X φ if there is an m-ary relation R on the

universe of A such that (A, X → R) satisfies φ.

71

Existential Second-Order Logic

ESO—existential second-order logic consists of those formulas of

second-order logic of the form:

∃X1 · · · ∃Xk φ

where φ is a first-order formula.

72

Examples

Evennness

This formula is true in a structure if, and only if, the size of the

domain is even.

∃B∃S ∀x∃yB(x, y) ∧ ∀x∀y∀zB(x, y) ∧B(x, z)→ y = z

∀x∀y∀zB(x, z) ∧B(y, z)→ x = y

∀x∀yS(x) ∧B(x, y)→ ¬S(y)

∀x∀y¬S(x) ∧B(x, y)→ S(y)

73

Examples

Transitive Closure

This formula is true of a pair of elements a, b in a structure if, and

only if, there is an E-path from a to b.

∃P ∀x∀y P (x, y)→ E(x, y)

∃xP (a, x) ∧ ∃xP (x, b) ∧ ¬∃xP (x, a) ∧ ¬∃xP (b, x)

∀x∀y(P (x, y)→ ∀z(P (x, z)→ y = z))

∀x∀y(P (x, y)→ ∀z(P (z, y)→ x = z))

∀x((x 6= a ∧ ∃yP (x, y))→ ∃zP (z, x))

∀x((x 6= b ∧ ∃yP (y, x))→ ∃zP (x, z))

74

Examples

3-Colourability

The following formula is true in a graph (V,E) if, and only if, it is

3-colourable.

∃R∃B∃G ∀x(Rx ∨Bx ∨Gx)∧

∀x(¬(Rx ∧Bx) ∧ ¬(Bx ∧Gx) ∧ ¬(Rx ∧Gx))∧

∀x∀y(Exy → (¬(Rx ∧Ry)∧

¬(Bx ∧By)∧

¬(Gx ∧Gy)))

75

Reading List for this Part

1. Papadimitriou. Chapter 5. Section 19.1.

2. Grädel et al. Section 3.1

76

Topics in Logic and Complexity

Part 5

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

77

Fagin’s Theorem

Theorem (Fagin)

A class C of finite structures is definable by a sentence of existential

second-order logic if, and only if, it is decidable by a

nondeterminisitic machine running in polynomial time.

ESO = NP

One direction is easy: Given A and ∃P1 . . .∃Pmφ.

a nondeterministic machine can guess an interpretation for

P1, . . . , Pm and then verify φ.

78

Fagin’s Theorem

Given a machine M and an integer k, there is an ESO sentence φ

such that A |= φ if, and only if, M accepts [A]<, for some order <

in nk steps.

We construct a first-order formula φM,k such that

(A, <,X) |= φM,k ⇔ X codes an accepting computation of M

of length at most nk on input [A]<

So, A |= ∃ < ∃XφM,k if, and only if, there is some order < on A so

that M accepts [A]< in time nk.

79

Order

The formula φM,k is built up as the conjunction of a number of

formulas. The first of these simply says that < is a linear order

∀x(¬x < x)∧

∀x∀y(x < y → ¬y < x)∧

∀x∀y(x < y ∨ y < x ∨ x = y)

∀x∀y∀z(x < y ∧ y < z → x < z)

We can use a linear order on the elements of A to define a

lexicographic order on k-tuples.

80

Ordering Tuples

If x = x1, . . . , xk and y = y1, . . . , yk are k-tuples of variables, we

use x = y as shorthand for the formula
∨

i<k xi = yi and x < y as

shorthand for the formula
∨

i<k

(
(
∨

j<i

xj = yj) ∧ xi < yi

)

We also write y = x + 1 for the following formula:

x < y ∧ ∀z
(
x < z→ (y = z ∨ y < z)

)

81

Constructing the Formula

Let M = (K,Σ, s, δ).

The tuple X of second-order variables appearing in φM,k contains

the following:

Sq a k-ary relation symbol for each q ∈ K

Tσ a 2k-ary relation symbol for each σ ∈ Σ

H a 2k-ary relation symbol

82

Intuitively, these relations are intended to capture the following:

• Sq(x) – the state of the machine at time x is q.

• Tσ(x,y) – at time x, the symbol at position y of the tape is σ.

• H(x,y) – at time x, the tape head is pointing at tape cell y.

We now have to see how to write the formula φM,k, so that it

enforces these meanings.

83

Initial state is s and the head is initially at the beginning of the

tape.

∀x
(
(∀y x ≤ y)→ Ss(x) ∧H(x,x)

)

The head is never in two places at once

∀x∀y
(
H(x,y)→ (∀z(y 6= z)→ (¬H(x, z)))

)

The machine is never in two states at once

∀x
∧

q

(Sq(x)→
∧

q′ 6=q

(¬Sq′(x)))

Each tape cell contains only one symbol

∀x∀y
∧

σ

(Tσ(x,y)→
∧

σ′ 6=σ

(¬Tσ′(x,y)))

84

Initial Tape Contents

The initial contents of the tape are [A]<.

∀x x ≤ n→ T1(1,x)∧

x ≤ na → (T1(1,x + n+ 1)↔ R1(x|a))

. . .

where,

x < na :
∧

i≤(k−a)

xi = 0

85

The tape does not change except under the head

∀x∀y∀z(y 6= z→ (
∧

σ

(H(x,y) ∧ Tσ(x, z)→ Tσ(x + 1, z)))

Each step is according to δ.

∀x∀y
∧

σ

∧

q

(H(x,y) ∧ Sq(x) ∧ Tσ(x,y))

→
∨

∆

(H(x + 1,y′) ∧ Sq′(x + 1) ∧ Tσ′(x + 1,y))

86

where ∆ is the set of all triples (q′, σ′, D) such that

((q, σ), (q′, σ′, D)) ∈ δ and

j′ =







j if D = S

j − 1 if D = L

j + 1 if D = R

Finally, some accepting state is reached

∃x Sacc(x)

87

NP

Recall that a languge L is in NP if, and only if,

L = {x | ∃yR(x, y)}

where R is polynomial-time decidable and polynomially-balanced.

Fagin’s theorem tells us that polynomial-time decidability can, in

some sense, be replaced by first-order definability.

88

co-NP

USO—universal second-order logic consists of those formulas of

second-order logic of the form:

∀X1 · · · ∀Xk φ

where φ is a first-order formula.

A corollary of Fagin’s theorem is that a class C of finite structures

is definable by a sentence of existential second-order logic if, and

only if, it is decidable by a nondeterminisitic machine running in

polynomial time.

USO = co-NP

89

Second-Order Alternation Hierarchy

We can define further classes by allowing other second-order

quantifier prefixes.

Σ1
1 = ESO

Π1
1 = USO

Σ1
n+1 is the collection of properties definable by a sentence of the

form: ∃X1 · · · ∃Xk φ where φ is a Π1
n formula.

Π1
n+1 is the collection of properties definable by a sentence of the

form: ∀X1 · · · ∀Xk φ where φ is a Σ1
n formula.

Note: every formula of second-order logic is Σ1
n and Π1

n for some n.

90

Polynomial Hierarchy

We have, for each n:

Σ1
n ∪Π1

n ⊆ Σ1
n+1 ∩Π1

n+1

The classes together form the polynomial hierarchy or PH.

NP ⊆ PH ⊆ PSPACE

P = NP if, and only if, P = PH

91

Reading List for this Part

1. Arora and Barak Chapter 5.

2. Grädel et al. Section 3.2

3. Libkin. Chapter 9.

4. Ebbinghaus and Flum. Chapter 7.

92

Topics in Logic and Complexity

Part 6

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

93

Expressive Power of First-Order Logic

We noted that there are computationally easy properties that are

not definable in first-order logic.

• There is no sentence φ of first-order logic such that A |= φ if,

and only if, |A| is even.

• There is no sentence φ that defines exactly the connected

graphs.

How do we prove these facts?

Our next aim is to develop the tools that enable such proofs.

94

Quantifier Rank

The quantifier rank of a formula φ, written qr(φ) is defined

inductively as follows:

1. if φ is atomic then qr(φ) = 0,

2. if φ = ¬ψ then qr(φ) = qr(ψ),

3. if φ = ψ1 ∨ ψ2 or φ = ψ1 ∧ ψ2 then

qr(φ) = max(qr(ψ1), qr(ψ2)).

4. if φ = ∃xψ or φ = ∀xψ then qr(φ) = qr(ψ) + 1

More informally, qr(φ) is the maximum depth of nesting of

quantifiers inside φ.

95

Formulas of Bounded Quantifier Rank

Note: For the rest of this lecture, we assume that our signature

consists only of relation and constant symbols. That is, there are

no function symbols of non-zero arity.

With this proviso, it is easily proved that in a finite vocabulary, for

each q, there are (up to logical equivalence) only finitely many

sentences φ with qr(φ) ≤ q.

To be precise, we prove by induction on q that for all m, there are

only finitely many formulas of quantifier rank q with at most m

free variables.

96

Formulas of Bounded Quantifier Rank

If qr(φ) = 0 then φ is a Boolean combination of atomic formulas. If

it is has m variables, it is equivalent to a formula using the

variables x1, . . . , xm. There are finitely many formulas, up to logical

equivalence.

Suppose qr(φ) = q + 1 and the free variables of φ are among

x1, . . . , xm. Then φ is a Boolean combination of formulas of the

form

∃xm+1ψ

where ψ is a formula with qr(ψ) = q and free variables

x1, . . . , xm, xm+1.

By induction hypothesis, there are only finitely many such

formulas, and therefore finitely many Boolean combinations.

97

Equivalence Relation

For two structures A and B, we say A ≡q B if for any sentence φ

with qr(φ) ≤ q,

A |= φ if, and only if, B |= φ.

More generally, if a and b are m-tuples of elements from A and B

respectively, then we write (A, a) ≡q (B,b) if for any formula φ

with m free variables qr(φ) ≤ q,

A |= φ[a] if, and only if, B |= φ[b].

98

Partial Isomorphisms

A map f is a partial isomorphism between structures A and B, if

• the domain of f = {a1, . . . , al} ⊆ A, including the

interpretation of all constants;

• the range of f = {b1, . . . , bl} ⊆ B, including the interpretation

of all constants; and

• f is an isomorphism between its domain and range.

Note that if f is a partial isomorphism taking a tuple a to a tuple

b, then for any quantifier-free formula θ

A |= θ[a] if, and only if, B |= θ[b].

99

Ehrenfeucht-Fräıssé Games

The q-round Ehrenfeucht game on structures A and B proceeds as

follows:

• There are two players called Spoiler and Duplicator.

• At the ith round, Spoiler chooses one of the structures (say B)

and one of the elements of that structure (say bi).

• Duplicator must respond with an element of the other

structure (say ai).

• If, after q rounds, the map ai 7→ bi is a partial isomorphism,

then Duplicator has won the game, otherwise Spoiler has won.

100

Equivalence and Games

Write A ∼q B to denote the fact that Duplicator has a winning

strategy in the q-round Ehrenfeucht game on A and B.

The relation ∼q is, in fact, an equivalence relation.

Theorem (Fräıssé 1954; Ehrenfeucht 1961)

A ∼q B if, and only if, A ≡q B

While one direction A ∼q B⇒ A ≡q B is true for an arbitrary

vocabulary, the other direction assumes that the vocabulary is

finite and has no function symbols.

101

Proof

To prove A ∼q B⇒ A ≡q B, it suffices to show that if there is a

sentence φ with qr(φ) ≤ q such that

A |= φ and B 6|= φ

then Spoiler has a winning strategy in the q-round Ehrenfeucht

game on A and B.

Assume that φ is in negation normal form, i.e. all negations are in front

of atomic formulas.

102

Proof

We prove by induction on q the stronger statement that if φ is a

formula with qr(φ) ≤ q and a = (a1, . . . , am) and b = (b1, . . . , bm)

are tuples of elements from A and B respectively such that

A |= φ[a] and B 6|= φ[b]

then Spoiler has a winning strategy in the q-round Ehrenfeucht

game which starts from a position in which a1, . . . , am and

b1, . . . , bm have already been selected.

103

Proof

When q = 0, φ is a quantifier-free formula. Thus, if

A |= φ[a] and B 6|= φ[b]

there is an atomic formula θ that distinguishes the two tuples and

therefore the map taking a to b is not a partial isomorphism.

When q = p+ 1, there is a subformula θ of φ of the form ∃xψ or

∀xψ such that qr(ψ) ≤ p and

A |= θ[a] and B 6|= θ[b]

If θ = ∃xψ, Spoiler chooses a witness for x in A.

If θ = ∀xψ, B |= ∃x¬ψ and Spoiler chooses a witness for x in B.

104

Using Games

To show that a class of structures S is not definable in FO, we find,

for every q, a pair of structures Aq and Bq such that

• Aq ∈ S, Bq ∈ S; and

• Duplicator wins a q-round game on Aq and Bq.

This shows that S is not closed under the relation ≡q for any q.

Fact:

S is definable by a first order sentence if, and only if, S is

closed under the relation ≡q for some q.

The direction from right to left requires a finite, function-free

vocabulary.

105

Evenness

Let A be a structure in the empty vocabulary with q elements and B

be a structure with q + 1 elements.

Then, it is easy to see that A ∼q B.

It follows that there is no first-order sentence that defines the

structures with an even number of elements.

If S ⊆ N is a set such that

{A | |A| ∈ S}

is definable by a first-order sentence then S is finite or co-finite.

106

Linear Orders

Let Ln denote the structure in one binary relation ≤ which is a

linear order of n elements. Then L6 6≡3 L7 but L7 ≡3 L8.

In general, for m,n ≥ 2p − 1,

Lm ≡p Ln

Duplicator’s strategy is to maintain the following condition after r

rounds of the game:

for 1 ≤ i < j ≤ r,

• either length(ai, aj) = length(bi, bj)

• or length(ai, aj), length(bi, bj) ≥ 2p−r − 1

Evenness is not first order definable, even on linear orders.

107

Reading List for this Part

1. Ebbinghaus and Flum. Chapter 2.

2. Libkin. Chapter 3.

3. Grädel et al. Section 2.3.

108

Topics in Logic and Complexity

Part 7

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

109

Connectivity

Consider the signature (E,<).

Consider structures G = (V,E,<) in which E is a graph relation

and < is a linear order.

There is no first order sentence γ in this signature such that

G |= γ if, and only if, (V,E) is connected.

110

Proof

Suppose there was such a formula γ.

Let γ′ be the formula obtained by replacing every occurrence of

E(x, y) in γ by the following formula

y = x+ 2∨

(x = max∧y = min+1)∨

(y = min∧x = max−1).

Then, ¬γ′ defines evenness on linear orders!

111

Proof

We obtain two disjoint cycles on linear orders of even length, and a

single cycle on linear orders of odd length.

112

Reduction

The above is, in fact, a first-order definable reduction from the

problem of evenness of linear orders to the problem of connectivity

of ordered graphs.

It follows from the above that there is no first order formula that

can express the transitive closure query on graphs.

Any such formula would also work on ordered graphs.

113

Gaifman Graphs and Neighbourhoods

On a structure A, define the binary relation:

E(a1, a2) if, and only if, there is some relation R and some

tuple a containing both a1 and a2 with R(a).

The graph GA = (A,E) is called the Gaifman graph of A.

dist(a, b) — the distance between a and b in the graph (A,E).

NbdA

r (a) — the substructure of A given by the set:

{b | dist(a, b) ≤ r}

114

Hanf Locality Theorem

We say A and B are Hanf equivalent with radius r (A ≃r B) if, for

every a ∈ A the two sets

{a′ ∈ a | NbdA

r (a) ∼= NbdA

r (a′)} and {b ∈ B | NbdA

r (a) ∼= NbdB

r (b)}

have the same cardinality

and, similarly for every b ∈ B.

Theorem (Hanf)

For every vocabulary σ and every p there is r ≤ 3p such that for

any σ-structures A and B: if A ≃r B then A ≡p B.

In other words, if r ≥ 3p, the equivalence relation ≃r is a

refinement of ≡p.

115

Hanf Locality

Duplicator’s strategy is to maintain the following condition:

After k moves, if a1, . . . , ak and b1, . . . , bk have been selected, then
⋃

i

NbdA

3p−k(ai) ∼=
⋃

i

NbdB

3p−k(bi)

If Spoiler plays on a within distance 2 · 3p−k−1 of a previously

chosen point, play according to the isomorphism, otherwise, find b

such that

Nbd3p−k−1(a) ∼= Nbd3p−k−1(b)

and b is not within distance 2 · 3p−k−1 of a previously chosen point.

Such a b is guaranteed by ≃r.

116

Uses of Hanf locality

The Hanf locality theorem immediately yields, as special cases, the

proofs of undefinability of:

• connectivity;

• 2-colourability

• acyclicity

• planarity

A simple illustration can suffice.

117

Connectivity

To illustrate the undefinability of connectivity and 2-colourability,

consider on the one hand the graph consisting of a single cycle of

length 4r + 6 and, on the other hand, a graph consisting of two

disjoint cycles of length 2r + 3.

118

Acyclicity

A figure illustrating that acyclicity is not first-order definable.

119

Planarity

A figure illustrating that planarity is not first-order definable.

120

Monadic Second Order Logic

MSO consists of those second order formulas in which all relational

variables are unary.

That is, we allow quantification over sets of elements, but

not other relations.

Any MSO formula can be put in prenex normal form with

second-order quantifiers preceding first order ones.

Mon.Σ1
1 — MSO formulas with only existential second-order

quantifiers in prenex normal form.

Mon.Π1
1 — MSO formulas with only universal second-order

quantifiers in prenex normal form.

121

Undefinability in MSO

The method of games and locality can also be used to show

inexpressibility results in MSO.

In particular,

There is a Mon.Σ1
1 query that is not definable in Mon.Π1

1

(Fagin 1974)

Note: A similar result without the monadic restriction would imply

that NP 6= co-NP and therefore that P 6= NP.

122

Connectivity

Recall that connectivity of graphs can be defined by a Mon.Π1
1

sentence.

∀S(∃xSx ∧ (∀x∀y (Sx ∧ Exy)→ Sy))→ ∀xSx

and by a Σ1
1 sentence (simply because it is in NP).

We now aim to show that connectivity is not definable by a Mon.Σ1
1

sentence.

123

MSO Game

The m-round monadic Ehrenfeucht game on structures A and B

proceeds as follows:

• At the ith round, Spoiler chooses one of the structures (say B)

and plays either a point move or a set move.

In a point move, he chooses one of the elements of the

chosen structure (say bi) – Duplicator must respond with

an element of the other structure (say ai).

In a set move, he chooses a subset of the universe of the

chosen structure (say Si) – Duplicator must respond

with a subset of the other structure (say Ri).

124

MSO Game

• If, after m rounds, the map

ai 7→ bi

is a partial isomorphism between

(A, R1, . . . , Rq) and (B, S1, . . . , Sq)

then Duplicator has won the game, otherwise Spoiler has won.

125

MSO Game

If we define the quantifier rank of an MSO formula by adding the

following inductive rule to those for a formula of FO:

if φ = ∃Sψ or φ = ∀Sψ then qr(φ) = qr(ψ) + 1

then, we have

Duplicator has a winning strategy in the m-round monadic

Ehrenfeucht game on structures A and B if, and only if, for

every sentence φ of MSO with qr(φ) ≤ m

A |= φ if, and only if, B |= φ

126

Existential Game

The m, p-move existential game on (A,B):

• First Spoiler makes m set moves on A, and Duplicator replies

on B.

• This is followed by an Ehrenfeucht game with p point moves.

If Duplicator has a winning strategy, then for every Mon.Σ1
1

sentence:

φ ≡ ∃R1 . . .∃Rm ψ

with qr(ψ) = p,

if A |= φ then B |= φ

127

Variation

To show that a Boolean query Q is not Mon.Σ1
1 definable, find for

each m and p

• A ∈ Q; and

• B 6∈ P ; such that

• Duplicator wins the m, p move game on (A,B).

Or,

• Duplicator chooses A.

• Spoiler colours A (with 2m colours).

• Duplicator chooses B and colours it.

• They play a p-round Ehrenfeucht game.

128

Application

Write Cn for the graph that is a simple cycle of length n.

For n sufficiently large, and any colouring of Cn, we can find an

n′ < n and a colouring of

Cn′ ⊕ Cn−n′ the disjoint union of two cycles—one of length

n′, the other of length n− n′

So that the graphs Cn and Cn′ ⊕ Cn−n′ are ≃r equivalent.

Taking n > (2r + 1)2
m+2 suffices.

129

Reading List for this Part

1. Ebbinghaus and Flum. Section 2.4.

2. Libkin. Chapter 4.

3. Grädel et al. Section 2.3 and 2.5

130

Topics in Logic and Complexity

Part 8

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

131

Expressive Power of Logics

We have seen that the expressive power of first-order logic, in terms

of computational complexity is weak.

Second-order logic allows us to express all properties in the

polynomial hierarchy.

Are there interesting logics intermediate between these two?

We have seen one—monadic second-order logic.

We now examine another—LFP—the logic of least fixed points.

132

Inductive Definitions

LFP is a logic that formalises inductive definitions.

Unlike in second-order logic, we cannot quantify over

arbitrary relations, but we can build new relations

inductively.

Inductive definitions are pervasive in mathematics and computer

science.

The syntax and semantics of various formal languages are typically

defined inductively.

viz. the definitions of the syntax and semantics of

first-order logic seen earlier.

133

Transitive Closure

The transitive closure of a binary relation E is the smallest relation

T satisfying:

• E ⊆ T ; and

• if (x, y) ∈ T and (y, z) ∈ E then (x, z) ∈ T .

This constitutes an inductive definition of T and, as we have

already seen, there is no first-order formula that can define T in

terms of E.

134

Monotone Operators

In order to introduce LFP, we briefly look at the theory of

monotone operators, in our restricted context.

We write Pow(A) for the powerset of A.

An operator in A is a function

F : Pow(A)→ Pow(A).

F is monotone if

if S ⊆ T, then F (S) ⊆ F (T).

135

Least and Greatest Fixed Points

A fixed point of F is any set S ⊆ A such that F (S) = S.

S is the least fixed point of F , if for all fixed points T of F , S ⊆ T .

S is the greatest fixed point of F , if for all fixed points T of F ,

T ⊆ S.

136

Least and Greatest Fixed Points

For any monotone operator F , define the collection of its pre-fixed

points as:

Pre = {S ⊆ A | F (S) ⊆ S}.

Note: A ∈ Pre.

Taking

L =
⋂

Pre,

we can show that L is a fixed point of F .

137

Fixed Points

For any set S ∈ Pre,

L ⊆ S by definition of L.

F (L) ⊆ F (S) by monotonicity of F .

F (L) ⊆ S by definition of Pre.

F (L) ⊆ L by definition of L.

F (F (L)) ⊆ F (L) by monotonicity of F

F (L) ∈ Pre by definition of Pre.

L ⊆ F (L) by definition of L.

138

Least and Greatest Fixed Points

L is a fixed point of F .

Every fixed point P of F is in Pre, and therefore L ⊆ P .

Thus, L is the least fixed point of F

Similarly, the greatest fixed point is given by:

G =
⋃

{S ⊆ A | S ⊆ F (S)}.

139

Iteration

Let A be a finite set and F be a monotone operator on A.

Define for i ∈ N:

F 0 = ∅

F i+1 = F (F i).

For each i, F i ⊆ F i+1 (proved by induction).

140

Iteration

Proof by induction.

∅ = F 0 ⊆ F 1.

If F i ⊆ F i+1 then, by monotonicity

F (F i) ⊆ F (F i+1)

and so F i+1 ⊆ F i+2.

141

Fixed-Point by Iteration

If A has n elements, then

Fn = Fn+1 = Fm for all m > n

Thus, Fn is a fixed point of F .

Let P be any fixed point of F . We can show induction on i, that

F i ⊆ P .

F 0 = ∅ ⊆ P

If F i ⊆ P then

F i+1 = F (F i) ⊆ F (P) = P.

Thus Fn is the least fixed point of F .

142

Defined Operators

Suppose φ contains a relation symbol R (of arity k) not interpreted

in the structure A and let x be a tuple of k free variables of φ.

For any relation P ⊆ Ak, φ defines a new relation:

FP = {a | (A, P) |= φ[a]}.

The operator Fφ : Pow(Ak)→ Pow(Ak) defined by φ is given by the

map

P 7→ FP .

Or, Fφ,b if we fix parameters b.

143

Positive Formulas

Definition

A formula φ is positive in the relation symbol R, if every occurence

of R in φ is within the scope of an even number of negation signs.

Lemma

For any structure A not interpreting the symbol R, any formula φ

which is positive in R, and any tuple b of elements of A, the

operator Fφ,b : Pow(Ak)→ Pow(Ak) is monotone.

144

Reading List for this Part

1. Ebbinghaus and Flum. Section 8.1.

2. Libkin. Sections 10.1 and 10.2.

3. Grädel et al. Section 3.3.

