L108: Categorical theory and logic Exercise sheet 4

Sam Staton sam.staton@cl.cam.ac.uk

Revised: December 28, 2012, 16:00.

- 1. Let X be a set. We consider the partial order P(X) of subsets of X as a category, with a morphism $S \to T$ if S is a subset or equal to T. We can think of the objects of P(X) as predicates on X.
 - (a) Consider another set Y and consider the function $\pi_1^* : P(X) \to P(X \times Y)$ given by $\pi_1^*(S) = (S \times Y)$. Show that it is a functor between categories.
 - (b) Let $\exists_{\pi_1} : P(X \times Y) \to P(X)$ be the function given by

$$\exists_{\pi_1}(S) \stackrel{\text{def}}{=} \{ x \in X \mid \exists y \in Y.(x,y) \in S \}.$$

Show that \exists_{π_1} is a functor and show that π_1^* is right adjoint to \exists_{π_1} .

- (c) Show that $\pi_1^* : P(X) \to P(X \times Y)$ has a right adjoint (a functor $P(X \times Y) \to P(X)$).
- 2. Let X be a set. The 'slice category' \mathbf{Set}/X is defined as follows. The objects are pairs (P, f) where P is a set and $f: P \to X$ is a function. A morphism $(P, f) \to (Q, g)$ is a function $h: P \to Q$ such that f = gh.

(We think of an object of the slice category as a proof-relevant predicate: it comprises a set of proofs P and a function $f: P \to X$ saying which elements of X the proofs are about. For any $x \in X$, we have a set $\{p \mid f(p) = x\}$ of proofs which is empty if the predicate is false for x.)

- (a) Finish showing that \mathbf{Set}/X is indeed a category.
- (b) Show that \mathbf{Set}/X has products.
- (c) Let Y be a set. Define a functor $\Sigma_{\pi_1} : \mathbf{Set}/(X \times Y) \to \mathbf{Set}/X$ which acts on objects by $\Sigma_{\pi_1}(P, f) \stackrel{\text{def}}{=} (P, \pi_1 \cdot f)$.
- (d) Show that $\Sigma_{\pi_1} : \mathbf{Set}/(X \times Y) \to \mathbf{Set}/X$ has a right adjoint, a functor $\pi_1^* : \mathbf{Set}/X \to \mathbf{Set}/(X \times Y)$.
- (e) Show that $\pi_1^* : \mathbf{Set}/X \to \mathbf{Set}/(X \times Y)$ has a right adjoint (which will be a functor $\mathbf{Set}/(X \times Y) \to \mathbf{Set}/X$).