L108: Category theory and logic Exercise sheet 1

Sam Staton

sam.staton@cl.cam.ac.uk

Revised: October 22, 2012, 11:24.

- 1. An object X in a category is an *initial object* if for any object Y there is a unique morphism $X \to Y$.
 - (a) Does the category of sets have any initial objects?
 - (b) Does the category of monoids have any initial objects?
 - (c) State and prove a theorem making precise the following informal statement: "initial objects are unique up-to unique isomorphism".
- 2. Let \mathcal{C} be a category. The dual of \mathcal{C} is a category \mathcal{C}^{op} with the same objects as \mathcal{C} and where $\mathcal{C}^{\text{op}}(A, B) = \mathcal{C}(B, A)$.
 - (a) Complete the definition of the category \mathcal{C}^{op} .
 - (b) Give an example of a finite category which is not the same as its dual (up to isomorphism).
 - (c) Give an example of a finite category that is the same as its dual.
 - (d) Show that a category C has an initial object if and only if C^{op} has a terminal object.
- 3. Let X be a set. Define a "monoid over X" to be a structure (Y, \cdot_Y, i_Y, f) where (Y, \cdot_Y, i_Y) is a monoid and $f: X \to Y$ is a function.
 - (a) Describe a category whose objects are monoids over X.
 - (b) Does this category have an initial object?
 - (c) State and prove a theorem making precise the following statement: "free monoids are unique up-to unique isomorphism".