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Module L101: Machine Learning for Language Processing

Discriminative Sequence Models
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e Simple generative model (left) and discriminative model (right)

— right BN a maximum entropy Markov model
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Sequence Maximum Entropy Models

e State posteriors modelled in the Maximum Entropy Markov model

— could extend to the complete sequence
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e Problem is that there are a vast number of possible features

What features to extract from the state/observation sequence?
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(Simple) Linear Chain Conditional Random Fields

e Extract features based on undirected graph

— Y% Y%
— conditional independence assumptions
similar to HMM (though undirected)

e Posterior model becomes
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— D, number of transition style features with parameters A"
— D, number of word style features with parameters A?*

e This has some relationships to HMMs for particular forms of features
(though training different)
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Linear Chain Conditional Random Fields

q[ CI+1 e Extract features based on undirected graph

— conditional independence assumptions
extended to previous state

e Posterior model becomes

T

P(QO)"')QT’mla"'awT :_eXp p S:)\ifi(Qth—l)wt)
t=1 \i=1

e More interesting than HMM-like features

— features the same as MaxEnt Markov model
— BUT normalised globally not locally
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Normalisation term

e Need to be able to compute the normalisation term efficiently

— initially consider the simple linear chain case

Z = Z exp <Sj <Stj Aifi(ge, gr—1) + Za)\?fi(%axt)>>

qeEQr t=1 \i=1 i=1

A )

S
/S

NN

® /
O~ ~(—® & 7
|

y

Time

1

MPhil in Advanced Computer Science



Module L101: Machine Learning for Language Processing

Total Path Cost to a State/Time
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J> e Red possible partial paths
H“‘:. >O >
Q / / / / e Green state of interest
© . L _
& ® o—©0 o O

Time
e Total path cost to state s; at time ¢ is «;(t)

— total path cost to state s4 at time 5 given by (compare to Viterbi)

a4<5>—LAdd< +ZA fi(s4,83), a(4 +ZA fi(sa, 54 >+ZA fi(sa, 2s)

/ / / / / LAdd(a, b) = log (exp(a) + exp(b))

l exp(LAdd(a, b)) = exp(a) + exp(b)
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Forward-Backward Algorithm

e « is related to the forward-probability that is used to train HMMs (in the
hidden data case)

— recursion for this form of model can be expressed as

N Dy D4
a;(t) =log | Y exp | ar(t—1)+ > Aifi(sjise) | | + D> Aifi(sy, )
k=1 =1 1=1

— normalisation term can then be expressed as Z = exp(an(T))
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Forward-Backward Algorithm

e There's also a term related to the backward-probability
— consider observation at time ¢ given state s;, [5;(?)
N

Bi(t) =1log [ > exp [ Bi(t +Z>\tfz Sk, S;) +ZA fi(sk, @i 11)

k=1

— designed so that Z = 37 | exp (a;(t) + Bi(t))
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Training CRFs

e Training for CRFs is normally fully observed

training observation sequence @xq,...
training label sequence Ui, .- -

— where y, € {w1,...,wK}

e Need to find the model parameters A so that

A= arginaX{P(yla"'ayT’mla”'7wT7A)}
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Generalised lterative Scaling for CRFs

e CRF (also MaxEnt model) training is a convex optimisation problem

— one solution to train parameters is generalised iterative scaling
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— iterative approach (parameters at iteration k are )\[k])
e Numerator is the empirical feature count (as for MaxEnt models)

e Calculation of the feature expectations (denominator) uses forward-backward
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Inference with CRFs

e Recognition with CRFs involves finding the most probable label sequence ¢

q argmax { P(q|x1,...,x7)}

qeQr

— argmax Z)\ fi(x1,...,®T,q)
qeQT i=1

— normalisation term Z not used as it is the same for all label sequences
e The Viterbi algorithm is often used to perform recognition

— for the simple linear chain CRF relationship to HMM Viterbi clear:
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