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Module L101: Machine Learning for Language Processing

Discriminative Sequence Models

qqt

xt xt+1

t+1 qqt

xt xt+1
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Generative Model Discriminative Model

• Simple generative model (left) and discriminative model (right)

– right BN a maximum entropy Markov model

P (q0, . . . , qT |x1, . . . ,xT ) =
T
∏

t=1

P (qt|qt−1,xt)

state posterior probability given by (Zt normalisation term at time t)

P (qt|qt−1,xt) =
1

Zt

exp

(

D
∑

i=1

λifi(qt, qt−1,xt)

)
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Module L101: Machine Learning for Language Processing

Sequence Maximum Entropy Models

• State posteriors modelled in the Maximum Entropy Markov model

– could extend to the complete sequence

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

D
∑

i=1

λifi(q0, . . . , qT ,x1, . . . ,xT )

)

• Problem is that there are a vast number of possible features

What features to extract from the state/observation sequence?
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(Simple) Linear Chain Conditional Random Fields

qqt

xt xt+1

t+1 • Extract features based on undirected graph

– conditional independence assumptions
similar to HMM (though undirected)

• Posterior model becomes

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

T
∑

t=1

(

Dt
∑

i=1

λt

ifi(qt, qt−1) +

Da
∑

i=1

λa

ifi(qt,xt)

))

– Dt number of transition style features with parameters λt

– Da number of word style features with parameters λa

• This has some relationships to HMMs for particular forms of features
(though training different)
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Linear Chain Conditional Random Fields

qqt

xt xt+1

t+1 • Extract features based on undirected graph

– conditional independence assumptions
extended to previous state

• Posterior model becomes

P (q0, . . . , qT |x1, . . . ,xT ) =
1

Z
exp

(

T
∑

t=1

(

D
∑

i=1

λifi(qt, qt−1,xt)

))

• More interesting than HMM-like features

– features the same as MaxEnt Markov model
– BUT normalised globally not locally
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Normalisation term

• Need to be able to compute the normalisation term efficiently

– initially consider the simple linear chain case

Z =
∑

q∈QT

exp

(

T
∑

t=1

(

Dt
∑

i=1

λt

ifi(qt, qt−1) +

Da
∑

i=1

λa

ifi(qt,xt)

))
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Module L101: Machine Learning for Language Processing

Total Path Cost to a State/Time
St

at
e

Time

• Red possible partial paths

• Green state of interest

LAdd(a, b) = log (exp(a) + exp(b))

exp(LAdd(a, b)) = exp(a) + exp(b)

• Total path cost to state si at time t is αi(t)

– total path cost to state s4 at time 5 given by (compare to Viterbi)

α4(5) = LAdd

(

α3(4) +

Dt
∑

i=1

λt

ifi(s4, s3), α4(4) +

Dt
∑

i=1

λt

ifi(s4, s4)

)

+

Da
∑

i=1

λa

ifi(s4,x5)

Cambridge University
Computer Laboratory
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Forward-Backward Algorithm

• α is related to the forward-probability that is used to train HMMs (in the
hidden data case)

– recursion for this form of model can be expressed as

αj(t) = log

(

N
∑

k=1

exp

(

αk(t− 1) +

Dt
∑

i=1

λt

ifi(sj, sk)

))

+

Da
∑

i=1

λa

ifi(sj,xt)

– normalisation term can then be expressed as Z = exp(αN(T ))

Cambridge University
Computer Laboratory
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Forward-Backward Algorithm

• There’s also a term related to the backward-probability

– consider observation at time t given state sj, βj(t)

βj(t) = log

(

N
∑

k=1

exp

(

βk(t+ 1) +

Dt
∑

i=1

λt

ifi(sk, sj) +

Da
∑

i=1

λa

ifi(sk,xt+1)

))

– designed so that Z =
∑N

i=1 exp (αi(t) + βi(t))

Cambridge University
Computer Laboratory
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Training CRFs

• Training for CRFs is normally fully observed

training observation sequence x1, . . . ,xT

training label sequence y1, . . . , yT

– where yτ ∈ {ω1, . . . , ωK}

• Need to find the model parameters λ so that

λ̂ = argmax
λ

{P (y1, . . . , yT |x1, . . . ,xT ,λ)}

= argmax
λ

{

1

Z
exp

(

D
∑

i=1

λifi(x1, . . . ,xT , y1, . . . , yT )

)}

Cambridge University
Computer Laboratory
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Generalised Iterative Scaling for CRFs

• CRF (also MaxEnt model) training is a convex optimisation problem

– one solution to train parameters is generalised iterative scaling

λ
[k+1]
i = λ

[k]
i +

1

C
log

(

fi(x1, . . . ,xT , y1, . . . , yT )
∑

q∈QT
P (q|x1, . . . ,xT ,λ[k])fi(x1, . . . ,xT , q)

)

– iterative approach (parameters at iteration k are λ[k])

• Numerator is the empirical feature count (as for MaxEnt models)

• Calculation of the feature expectations (denominator) uses forward-backward

Cambridge University
Computer Laboratory
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Inference with CRFs

• Recognition with CRFs involves finding the most probable label sequence q̂

q̂ = argmax
q∈QT

{P (q|x1, . . . ,xT )}

= argmax
q∈QT

{

D
∑

i=1

λifi(x1, . . . ,xT , q)

}

– normalisation term Z not used as it is the same for all label sequences

• The Viterbi algorithm is often used to perform recognition

– for the simple linear chain CRF relationship to HMM Viterbi clear:

q̂ = argmax
q∈QT

{

T
∑

t=1

(

Dt
∑

i=1

λt

ifi(qt, qt−1) +

Da
∑

i=1

λa

ifi(qt,xt)

)}

Cambridge University
Computer Laboratory
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